Midterm Examination

Solution and Marking Scheme

1.	d			(4 points)
2.	a			(4 points)
3.	e			(4 points)
4.	(14	points total)		
	a)	For a given program, let N denote the total number of instructions, N_A the number of class A instructions, N_B the number of class B instructions, and N_C the number of class C instructions.		
		CPU time = CPU clock cyc	cles / clock rate	
		CPU time on M1 using C1	= $(4 N_A + 6 N_B + 8 N_C) / 400 \text{ msec}$ = $(4 x 0.3 + 6 x 0.5 + 8 x 0.2) \text{ N} / 400 \text{ msec}$ = $5.8 \text{ N} / 400 \text{ msec}$	(1.5 points)
		CPU time on M2 using C1	= (2 x 0.3 + 4 x 0.5 + 3 x 0.2) N / 200 msec = 3.2 N / 200 msec	(1.5 points)
		Thus, using C1, M1 is 6.4 /	/ 5.8 or 32 / 29 times as fast as M2.	(1.5 points)
	b)	CPU time on M1 using C2	= (4 x 0.3 + 6 x 0.2 + 8 x 0.5) N / 400 msec = 6.4 N / 400 msec	(1.5 points)
		CPU time on M2 using C2	= (2 x 0.3 + 4 x 0.2 + 3 x 0.5) N / 200 msec = 2.9 N / 200 msec	(1.5 points)
		Thus, using C2, M2 is 6.4 /	/ 5.8 or 32 / 29 times as fast as M1.	(1.5 points)
	c)	CPU time on M1 using C3	= (4 x 0.5 + 6 x 0.3 + 8 x 0.2) N / 400 msec = 5.4 N / 400 msec	(1.5 points)
		C3 is the best choice since shortest.	the CPU time for the program on M1 using C	3 is the (1 point)
	d)	CPU time on M2 using C3	= (2 x 0.5 + 4 x 0.3 + 3 x 0.2) N / 200 msec = 2.8 N / 200 msec	(1.5 points)
		C3 is the best choice since the CPU time for the program on M2 using C3 is the shortest. (1 point		3 is the (1 point)

5. (10 points total)

Let N denote the total number of instructions in the program.

CPU time = CPU clock cycles / clock rate

CPU time on M1 = N / 400 msec (4 points) CPU time on M2 = $(5 \times 0.2 + 4 \times 0.1 + 4 \times 0.5 + 3 \times 0.15 + 3 \times 0.05)$ N / 200 msec = N / 50 msec (4 points)

(2 points)

Thus, M1 is 400 / 50 or 8 times as fast as M2.

6. (10 points total)

This pseudoinstruction

ble \$s0, \$s1, L

can be implemented as

slt \$t0, \$s1, \$s0 beq \$t0, \$zero, L

7. (15 points total)

```
add $t2, $t0, $zero # $t2 = address of a[0]
slti $t3, $t1, 10 # $t3 = 1 if i < 10
Loop:
     slti $t3, $t1, 10
                           # $t3 = 1 if i < 10
     addi $t4, $t1, 1
                           # $t4 = i + 1
                           # a[i] = i + 1
     sw
         $t4, 0($t2)
     addi $t1, $t1, 1
                           # $t1 = i + 1
                           \# $t2 = $t2 + 4
     addi $t2, $t2, 4
         Loop
     i
Exit:
```

8. (15 points total)

a)

	Inputs			Outputs	
а	b	CarryIn	CarryOut	Sum	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

(5 points)

b) Sum = $(a \cdot \underline{b} \cdot \underline{CarryIn}) + (\underline{a} \cdot \underline{b} \cdot \underline{CarryIn}) + (\underline{a} \cdot \underline{b} \cdot \underline{CarryIn}) + (a \cdot b \cdot \underline{CarryIn})$ (5 points)

9. (12 points total)

a)	Bit 31	: 0	(1 point)
	Bits 30-23	: 01111110	(2 points)
	Bits 22-0	: 11111111111111111111111	(2 points)
b)	x = -24		(3 points)

- c) With the biased notation, floating-point numbers can be compared in magnitude (e.g, for sorting) simply by performing integer comparison without having to compute the actual values of the floating-point numbers. (4 points)
- 10. (12 points total)
 - a) $2^{31} + 2^{27} + 2^{26} + 2^{25} + 2^{24} + 2^{23} + 2^{22} + 2^{21} + 2^{19} + 2^{18} + 2^{17} + 2^{16} + 2^{15} + 2^{14}$ (4 points)
 - b) $-2^{31} + 2^{27} + 2^{26} + 2^{25} + 2^{24} + 2^{23} + 2^{22} + 2^{21} + 2^{19} + 2^{18} + 2^{17} + 2^{16} + 2^{15} + 2^{14}$ (4 points)

Decimal value =
$$-(1 + 2^{-1} + 2^{-2} + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-7} + 2^{-8} + 2^{-9}) \ge 2^{31-127}$$
 (4 points)