
1

Q1.

(a) li $s0,4000
 lw $t1,44($s0)
 add $t1, $t1,$t0
 sw $t1, 40($s0)

(b) 80000 is too large to represent with 16 bits (the length of the immediate field in a sw instruc-
tion)

 (1c) 2 instructions are sufficient

 addui $t1, $t0, 65535
 sw $a0, 14465($t1)

Q2. The code detrmies the most frequent word in an array and returns it $v1 and its multiplicity
in $v0

2

Q3. Solution:

(a)

This circuit is a 2:4 decoder (a decoder is sufficient)

(b)

(c)

Sum = (a . b . Cin) + (a . b .Cin) + (a .b . Cin) + (a . b . Cin)

Cout = (a . b . Cin) + (a .b . Cin) + (a . b .Cin) + (a . b . Cin)

which can be simplified into the following

Cout = (b . Cin) + (a . Cin) + (a . b)

(d)

A B Out0 Out1 Out2 Out3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

a b Cin Cout Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

3

(e)

Result = S1 . S0 . D0 + S1 . S0 . D1 + S1 . S0 . D2

a

b

Cin

Sum

Cout

4

(f)

S0 S1 D0 D1 D2 Result

0 0 1 X X 1

1 0 X 1 X 1

0 1 X X 1 1

1 1 X X X X

5

Q4. Solution:

(a) CPI for P = 2*0.4 + 3*0.3 + 4*0.2 + 5*0.1

 = 3.0

 CPI for P’ = 2*0.4 + 2*0.3 + 3*0.2 + 4*0.1

 = 2.4

 (b) Therefore P’ is faster than P by

 the ratio 50/33.3 = 1.5 or about 50%

(c) CPI of P with new compiler

 = 2*0.5 + 3*0.35 + 4*0.1 + 5*0.05 = 2.7

 (d) with the new compiler, P is faster by

out3

out2

out1

out0

S
0

S
1

D0

D1

D2
Result

6

 37.04/33.3 = 1.112 or about 11%

Q5

addu $t2, $t3, $t4

sltu $t2, $t2, $t3

Q6.

(a) In both cases

step1: the address of the following instruction (i.e.,00004116 respect. 00004212) is stored in the
return address register $ra ($31 is also considered correct)
step 2: The PC is loaded with the address of the instruction labelled “term”, respectively “fact” (i.e.,
00004200 respect. 00004440).

NB: if answered by: the execution jumps to ... it should also be considered correct

(b) $ra =00004116

(c) $ra =00004212

(d) $ra =00004212

(e) $pc =00004212

Yes there is a problem. The program has an infinite loop in procedure term. This occured
because the first return address has been wiped by the second return address (the action of the
first jal in question a.step1 has been erased by the action of the second jal).

(f) register $ra needs to be pushed (saved) on the stack at the beginning of the procedures and
poped (restored) just before the instruction jr $ra.

NB: if they do not mention the stack yet mention “save” and “restore” it is also correct.

