Math 111 Final, Autumn 1995

(1) (15 points) Consider

$$A = \begin{bmatrix} 5 & -4 & -2 & 4 \\ 3 & -2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

1) Find a basis of eigenvectors of A;

2) Use the resulting diagonalization to compute $A^4 - 3A^3 + 2A^2$.

(2) (10 points) Consider polynomials

$$p_1 = x^2 - x$$
, $p_2 = 2x^2 - 2x + 1$, $p_3 = x^2 - 2x$.

1) Show that p_1, p_2, p_3 is a basis of the space P_2 of polynomials of degree ≤ 2 ;

2) What are the coordinates of $2x^2 + 3x - 1$ with respect to the basis.

(3) (10 points) Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 1 & 3 & 1 & 1 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \\ 1 & 5 & 3 & 5 \end{bmatrix}$$

Find the rank of A, the dimension of ColA, and the dimension of NulA.

(4) (15 points) Consider vector space W spanned by

$$u_{1} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \quad u_{2} = \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix}, \quad u_{3} = \begin{bmatrix} 3\\-3\\3\\3 \end{bmatrix}, \quad .u_{4} = \begin{bmatrix} 4\\4\\-4 \end{bmatrix}$$

1) Use Gram-Schmidt process to produce an orthogonal basis of W;

2) Find the distance from the vector (2, 1, 0, 1) onto W;

3) Find the distance from the vector (2, 1, 0, 1) onto W^{\perp} ;

(5) (17 points) Consider the matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 2 \\ 2 & 5 & 1 & 4 \\ 1 & 1 & 2 & -1 \end{array} \right].$$

1) Find an orthogonal basis for NulA;

2) Extend the orthogonal basis of NulA to an orthogonal basis of \mathbf{R}^4 .

(6) (15 points)

1) Find an example of 3×3 invertible matrices A and B, such that rank(A + B) = 1 (so that A + B is not invertible);

2) Find an example of 3×3 matrix with orthogonal column vectors but *non*orthogonal row vectors;

3) Find an example of 2×2 diagonalizable matrices A and B, such that A + B is not diagonalizable; (7) (18 points) True or False (no reason needed)

1) If $T: V \to W$ is a linear transformation, and $\{v_1, v_2, v_3\}$ span V, then $\{T(v_1), T(v_2), T(v_3)\}$ span W;

2) If $T: V \to W$ is a linear transformation, and $\{v_1, v_2, v_3\}$ are linearly independent, then $\{T(v_1), T(v_2), T(v_3)\}$ are linearly independent;

3) If $\{v_1, v_2, \dots, v_n\}$ span V, then dim $V \leq n$;

4) If $\{v_1, v_2, \dots, v_n\}$ span V, then $\{v_1, v_2, \dots, v_n, v_{n+1}, \dots, v_{n+m}\}$ also span V;

5) If $n < \dim V$, then $\{v_1, v_2, \cdots, v_n\}$ are linearly independent;

6) If A is a 11×17 matrix, and the general solution of the Ax = 0 has 8 free variables, then rank A = 9.

7) An $n \times n$ matrix can have at most n eigenvalues;

8) If $A \neq 0$, then 0 is not an eigenvalue of A;

9) If A is diagonalizable, then A^T is also diagonalizable;

10) If u is an eigenvector of A and B, then it is an eigenvector of A + B;

11) If all eigenvalues of A are 1, then A = I;

12) If $\{u_1, v_1, w_1\}$ and $\{u_2, v_2, w_2\}$ are orthogonal sets, then $\{u_1 + u_2, v_1 + v_2, w_1 + w_2\}$ is also an orthogonal set;

13) If $\{v_1, v_2, \dots, v_n, v_{n+1}, \dots, v_{n+m}\}$ is orthonormal, then $\{v_1, v_2, \dots, v_n\}$ is also orthonormal;

14) If the columns of a square matrix A are orthonormal, then the rows of A are also orthonormal;

15) If $\{u_1, u_2\}$ is a basis of W, then $\operatorname{proj}_W v = \operatorname{proj}_{u_1} v + \operatorname{proj}_{u_2} v$;

16) $\operatorname{proj}_W(u+v) = \operatorname{proj}_W u + \operatorname{proj}_W v;$

17) If $u \in V$ is orthogonal to all vectors in V, then u = 0;

18) If U is an orthogonal matrix, then U^2 is also orthogonal;

Answer to Math 111 Final, Autumn 1995

(1) The charteristic equation is $\lambda(\lambda - 1)(\lambda - 2)^2 = 0$. For $\lambda_1 = 0$, we get eigenvector $u_1 = (2, 4, -1, 1)$. For $\lambda_2 = 1$, we get eigenvector $u_2 = (1, 1, 0, 0)$. For $\lambda_3 = 2$, the eigenspace is 2-dimensional with basis $u_3 = (4, 3, 0, 0)$ and $u_4 = (2, 2, 1, 1)$. u_1, u_2, u_3, u_4 is basis of eigenvectors of A.

If $P = [u_1, u_2, u_3, u_4]$, then $\Lambda = P^{-1}AP$ is a diagonal matrix with 0, 1, 2, 2 as diagonal entries. It follows from $\Lambda^4 - 3\Lambda^3 + 2\Lambda^2 = 0$ that $A^4 - 3A^3 + 2A^2 = 0$.

(2) The coordinates of p_1, p_2, p_3 with respect to the basis $1, x, x^2$ are $u_1 = (0, -1, 1), u_2 = (1, -2, 2), u_3 = (0, -2, 1)$. Since the matrix $[u_1, u_2, u_3]$ is invertible, u_1, u_2, u_3 is a basis of \mathbf{R}^3 . Thus p_1, p_2, p_3 is a basis of P_2 .

If $2x^2 + 3x - 1 = c_1p_1 + c_2p_2 + c_3p_3$, then $c_1 + 2c_2 + c_3 = 2$, $-c_1 - 2c_2 - 2c_3 = 3$, $c_2 = -1$. The solution is $(c_1, c_2, c_3) = (9, -1, -5)$.

(3) A can be reduced by row operations to

	1	2	0	-1	
	0	1	1	2	
	0	0	0	3	
	0	0	0	0	
	0	0	0	0	
2				-	

Therefore rank A = 3, dimColA = 3, and dimNulA = 4 - 3 = 1. (4) By Gram-Schmidt process, we have

$$\begin{aligned} v_1 &= u_1 = (1, 0, 1, 0) \\ v_2 &= u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1 = (2, 2, 2, 0) - \frac{4}{2} (1, 0, 1, 0) = (0, 2, 0, 0) \\ v_3 &= u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2 = (3, -3, 0, 3) - \frac{6}{2} (1, 0, 1, 0) - \frac{6}{4} (0, 2, 0, 0) = (0, 0, 0, 3) \end{aligned}$$

Since $u_4 \in \text{span}\{v_1, v_2, v_3\}$ (one will get $v_4 = 0$ by Gram-Schmidt process), v_1, v_2, v_3 is an orthogonal basis of W.

We have

$$\operatorname{proj}_{W}(2,1,0,1) = \frac{x \cdot v_{1}}{v_{1} \cdot v_{1}}v_{1} + \frac{x \cdot v_{2}}{v_{2} \cdot v_{2}}v_{2} + \frac{x \cdot v_{3}}{v_{3} \cdot v_{3}}v_{3} = (1,1,1,1).$$

Thus dist $((2,1,0,1),W) = ||(2,1,0,1) - \text{proj}_W(2,1,0,1)|| = \sqrt{2}||$, and dist $((2,1,0,1),W^{\perp}) = ||\text{proj}_W(2,1,0,1)|| = 2$.

(5) A is row equivalent to

$$\left[\begin{array}{rrrrr} 1 & 0 & 3 & -3 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Thus the null space has basis (-3, 1, 1, 0), (3, -2, 0, 1). By Gram-Schmidt process, we get an orthogonal basis $u_1 = (-3, 1, 1, 0)$, $u_2 = (0, -1, 1, 1)$ of NulA.

By the meaning of NulA, the space $(NulA)^{\perp}$ is spanned by the row vectors of A. Thus (1, 0, 3, -3) and (0, 1, -1, 2) is a basis of $(NulA)^{\perp}$. We apply the Gram-Schmidt process in the reversed order to get an orthogonal basis $v_1 = (0, 1, -1, 2)$, $v_2 = (2, 3, 3, 0)$ of $(NulA)^{\perp}$.

 u_1, u_2, v_1, v_2 is then an orthogonal basis of \mathbf{R}^4 .

(6) 1) Take A and B to be diagonal matrices with respectively 1, 1, 1 and 2, 1, 1 on the diagonals.

Math 111 Final, Spring 1995

(1) (10 points) Consider

$$A = \left[\begin{array}{rrrr} 1 & 10 & 5 \\ 0 & -4 & 0 \\ 5 & 10 & 1 \end{array} \right].$$

1) Find the eigenvalues of A;

- 2) Find a basis of eigenvectors of A.
- (2) (15 points) Consider vector space W spanned by

$$u_1 = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 4\\ 4\\ 4\\ 0 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 2\\ 2\\ 0\\ 0 \end{bmatrix}.$$

1) Show that u_1, u_2, u_3 is a basis of W;

- 2) Use Gram-Schmidt process to produce an orthogonal basis of W;
- 3) Find the orthogonal projection of the vector (12, 0, 0, 0) onto W.
- (3) (10 points) Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 8 \end{bmatrix}.$$

- 1) Find a basis for ColA;
- 2) Find a basis for NulA;
- 3) Find the rank of A.
- (4) (10 points) Find numbers a, b, c, such that

$$U = \begin{bmatrix} 1/3 & 2/3 & a \\ 2/3 & 1/3 & b \\ 2/3 & -2/3 & c \end{bmatrix},$$

is an orthogonal matrix. Then find U^{-1} . (5) (15 points) Consider

$$A = \left[\begin{array}{rrr} 1 & -2 & 1 \\ 1 & 0 & -1 \end{array} \right], \quad u = \left[\begin{array}{r} 6 \\ 0 \\ 0 \end{array} \right].$$

1) Find the distance from u to NulA;

2) Find the distance from u to $(NulA)^{\perp}$.

(6) (15 points) Find all the vectors

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

such that

$$\begin{bmatrix} 2 & 1 & 7 & 2 \\ -1 & 2 & -6 & -1 \end{bmatrix} x = 0.$$

(7) (12 points)

1) Find an example of 3×3 noninvertible matrices A and B, such that A + B is invertible;

2) Find an example of two bases $\{u_1, u_2, u_3\}$ and $\{w_1, w_2, w_3\}$, such that $\{u_1 + w_1, u_2 + w_2, u_3 + w_3\}$ is not a basis;

3) Find an example of invertible 2×2 matrix that is not an orthogonal matrix;

4) Find an example of 2×2 matrices A and B, such that they have the same eigenvalues but A is diagonalizable and B is not diagonalizable;

(8) (13 points) True or False (no reason needed)

1) If v_1, v_2, v_3, v_4 span a 4-dimensional vector space V, then $\{v_1, v_2, v_3, v_4\}$ is a basis of V;

2) If all eigenvalues of A are 0, then A = 0;

3) If an invertible matrix A is diagonalizable, then A^{-1} is also diagonalizable;

4) If v is an eigenvector of A, then v is an eigenvector of A^2 ;

5) If v is an eigenvector of A, then v is an eigenvector of A^T ;

6) If u and v are eigenvectors of A, then u + v is also an eigenvector of A;

7) If $\{u, v, w\}$ is an orthogonal basis of \mathbb{R}^3 , then $\{2u, -3v, 5w\}$ is also an orthogonal basis;

8) If $u \perp v, v \perp w$, then $u \perp w$;

9) If $u \in W$ and $u \in W^{\perp}$, then u = 0;

10) If the orthogonal projection of y onto W is \hat{y} , then the orthogonal projection of 10y onto W is $10\hat{y}$;

11) If column vectors of a matrix is orthogonal, then the row vectors of the matrix is also orthogonal;

12) If U and V are orthogonal matrices, then U + V is an orthogonal matrix;

13) If U and V are orthogonal matrices, then UV^{-1} is an orthogonal matrix.

Answer to Math 111 Final, Spring 1995

(1) The charteristic equation is $(\lambda + 4)^2(\lambda - 6) = 0$. For $\lambda_1 = -4$, the eigenvectors $x = (x_1, x_2, x_3)$ satisfy $x_1 + 2x_2 + x_3 = 0$. Therefore $u_1 = (-2, 1, 0)$ and $u_2 = (-1, 0, 1)$ is a basis of the eigenspace. For $\lambda_2 = 6$, the eigenvectors x satisfy $x_1 = x_3$, $x_2 = 0$. Therefore $u_3 = (1, 0, 1)$ spans the eigenspace. u_1 , u_2 , and u_3 is a basis of eigenvectors.

(2) The row operation may reduce the matrix $[u_1, u_2, u_3]$ to $\begin{bmatrix} I_3\\0 \end{bmatrix}$. Since all columns are pivotal, we see that u_1, u_2, u_3 are linearly independent. Since they span W, they form a basis of W.

By Gram-Schmidt process, we have

$$\begin{array}{l} v_1 = u_1 = (1,1,1,1) \\ v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1 = (4,4,4,0) - \frac{12}{4} (1,1,1,1) = (1,1,1,-3) \\ v_3 = u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2 = (2,2,0,0) - \frac{4}{4} (1,1,1,1) - \frac{4}{12} (1,1,1,-3) = \frac{2}{3} (1,1,-2,0) \end{array} .$$

Thus

$$\operatorname{proj}_{W}(12,0,0,0) = \frac{x \cdot v_{1}}{v_{1} \cdot v_{1}}v_{1} + \frac{x \cdot v_{2}}{v_{2} \cdot v_{2}}v_{2} + \frac{x \cdot v_{3}}{v_{3} \cdot v_{3}}v_{3} = (6,6,0,0).$$

(3) After row operation, we get

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 8 \end{bmatrix} \longrightarrow B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore the first two columns (1,0,1,2) and (0,1,0,2) form a basis of ColA. Moreover, the solution of Ax = 0 is given by $x_1 = -2x_3$, $x_2 = -2x_3$. Therefore (-2, -2, 1) is a basis of NulA. Rank $A = \dim \operatorname{Col} A = 2$.

(4) U is orthogonal if and only if $U^T U = I$. This means $\frac{1}{3}a + \frac{2}{3}b + \frac{2}{3}c = 0$, $\frac{2}{3}a + \frac{1}{3}b - \frac{2}{3}c = 0$, $a^2 + b^2 + c^2 = 1$. The solution is $(a, b, c) = \pm(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3})$. If we choose positive sign, then because U is orthogonal,

$$U^{-1} = U^T = \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}.$$

(5) NulA is spanned by $v_1 = (1, 1, 1)$. So the projection of u onto NulA is $\frac{u \cdot v_1}{v_1 \cdot v_1} v_1 = (2, 2, 2)$, and the distance from u to NulA is $||u - (2, 2, 2)|| = 2\sqrt{6}$. (NulA)^{\perp} = RowA is spanned by $v_2 = (1, -2, 1)$, $v_3 = (1, 0, -1)$. Since $v_2 \perp v_3$, we see that the projection of u onto (NulA)^{\perp} is $\frac{u \cdot v_2}{v_2 \cdot v_2} v_2 + \frac{u \cdot v_3}{v_3 \cdot v_3} v_3 = (4, -2, -2)$. Thus the distance from u to (NulA)^{\perp} is $||u - (4, -2, -2)|| = 2\sqrt{3}$. (6) To be in the span means

$$x = a \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}.$$

Substituting this into the equation we get 12a + 4b = 0, -6a - 2b = 0. Thus we get b = -3a, and x = (-2a, a, a, -2a). The solutions form a one dimensional subspace spanned by (-2, 1, 1, -2). (7)

1) Take A, B to be diagonal, with A having 1,0,0, and B having 0,1,1. Then $A+B = I_3$ is invertible. 2) For any basis $\{u_1, u_2, u_3\}$, if we choose $w_i = -u_i$, then $\{u_1 + w_1, u_2 + w_2, u_3 + w_3\}$ consists of 0's and is not a basis;

3) Use any two nonperpendicular vectors of \mathbf{R}^2 as the columns;

4) Take $A = I_2$ and B upper triangular with 1, 1 as diagonal.

(8) T; F; T; T; T; F; F; T; F; T; T; F; F; T.

Math 111 Final Exam, Spring 1997

(1) (17 points) Consider

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 2 \end{bmatrix}$$

1) Show that A has an orthogonal basis of eigenvectors;

2) Express b as a linear combination of the orthogonal basis found in 1);

3) Use 1) to compute $A^6 - 6A^4 + 8A^2 + I$.

(2) (17 points) Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 & 1 \\ 0 & 4 & 0 & 5 & 1 \end{bmatrix}.$$

1) Find a basis for NulA;

2) Find a basis for $(NulA)^{\perp}$;

3) Find the rank of A and the dimension of ColA.

(3) (15 points) Consider vectors

$$u_1 = \begin{bmatrix} 0\\ 2\\ 1\\ 0 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1\\ -1\\ 0\\ 0 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 1\\ 2\\ 0\\ -1 \end{bmatrix}, \quad y = \begin{bmatrix} 0\\ 0\\ 0\\ 1 \end{bmatrix}.$$

1) Use Gram-Schmidt process to turn u_1, u_2, u_3 into an orthogonal set;

2) Extend the orthogonal set in 1) to an orthogonal basis of \mathbf{R}^4 ;

3) Find the distance from y to span{ u_1, u_2, u_3 }.

(4) (10 points) Consider

	1	0	0	0	0			1	0	0	0	0 -
	2	2	0	0	0			π	$\sqrt{\pi}$	0	0	0
A =	3	3	3	0	0	,	P =	e	e^2	e^3	0	0
	4	4	4	4	0			1	10	100	1000	0
	5	5	5	5	5			1	0.1	0.01	0.001	0.0001

1) Find the eigenvalues of A;

2) Find eigenvalues of $P^{-1}A^{1997}P$;

3) Is A diagonalizable? Explain.

(5) (9 points) Circle the right answer (no reason needed)

1) Suppose the rank of $A_{5\times 8}$ is 3. Then the dimension of $(\text{Nul}A^T)^{\perp}$ is

1, 2, 3, 4, 5, 6, 7, 8.

2) Suppose x is the orthogonal projection of y to W^{\perp} . Then the projection of -y to W is

$$y+x$$
, $y-x$, $-y-x$, $-y+x$

3) Suppose the eigenvalues of $A^2 - 3A + 2$ are 0 and 2. Then the possible eigenvalues of A^2 are

$$\{0, 1, 2, 3\}, \{0, 1, 4, 9\}, \{0, 2\}, \{0, 4\}, \{0, 1, 2, 3, 4, 9\}$$

(6) (12 points)

1) Find an example of 3×3 matrices A and B, such that A and B have the same eigenvectors but not the same eigenvalues;

2) Find an example of 3×3 matrices A and B, such that A and B have the same eigenvalues but not the same eigenvectors;

3) Find an example of 2×2 matrices A and B, such that A and B are not diagonalizable but A + B is diagonalizable;

4) Find an example of 2×2 matrix A such that A is not diagonalizable, but A^2 is diagonalizable. (7) (20 points) True or False (no reason needed)

1) If columns of $A_{5\times 3}$ are linearly independent, then rows of A span \mathbb{R}^3 ;

2) If $A_{m \times n} x = b$ always has solution, then rank A = m;

3) If $A_{m \times n} x = 0$ has only trivial solution, then rank A = m;

- 4) If columns of a square matrix A are orthogonal, then the rows of A are orthogonal;
- 5) If columns of a square matrix A are orthonormal, then the rows of A are orthonormal;

6) If all eigenvalues of A are 1, then A = I;

- 7) If A and B are diagonalizable, then AB is also diagonalizable;
- 8) If v is an eigenvector of A, then v is an eigenvector of 2A;
- 9) If v is an eigenvector of A and B, then v is an eigenvector of AB;
- 10) If λ is an eigenvalue of A and B, then λ is an eigenvalue of A + B;

- 11) If λ is an eigenvalue of A and B, then λ is an eigenvalue of AB;
- 12) If $A_{n \times n}$ has fewer than n distinct eigenvalues, then A is not diagonalizable;
- 13) Distinct eigenvectors are linearly independent;
- 14) If $u \perp w$, $v \perp w$, then $u + v \perp w$;
- 15) If $u \perp u$, then u = 0;

16) If *r* is any number, then ||ru - rv|| = r||u - v||;

- 17) If $||u v||^2 = ||u||^2 + ||v||^2$, then $u \perp v$;
- 18) If $u \perp v$, then $||u v||^2 = ||u||^2 + ||v||^2$;
- 19) If U is and orthogonal matrix, then U^T is an orthogonal matrix;
- 20) If U is and orthogonal matrix, then U^{-1} is an orthogonal matrix.

Answer to Math 111 Final Exam, Spring 1997

(1) det $(A - \lambda I) = \lambda(\lambda - 2)(\lambda^2 - 2)$. Therefore we obtain $\lambda_1 = 0, \lambda_2 = 2, \lambda_3 = \sqrt{2}, \lambda_4 = -\sqrt{2}$ and the corresponding eigenvectors (your answer may differ by multiplying a number)

$$u_{1} = \begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix}, \quad u_{2} = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}, \quad u_{3} = \begin{bmatrix} \sqrt{2} - 1\\ -1\\ 1\\ -\sqrt{2} + 1 \end{bmatrix}, \quad u_{4} = \begin{bmatrix} -\sqrt{2} - 1\\ -1\\ 1\\ \sqrt{2} + 1 \end{bmatrix}.$$

Then we may easily verify that $u_i \cdot u_j = 0$ for $i \neq j$. Therefore u_1, u_2, u_3, u_4 is an orthogonal basis of eigenvectors of A.

The expression of b in terms of the orthogonal basis is

$$b = \frac{b \cdot u_1}{u_1 \cdot u_1} u_1 + \dots = \frac{1}{2} (u_1 + u_2 + u_3 + u_4).$$

From 1) we have $A = U^{-1}DU$ for diagonal matrix D with $0, 2, \sqrt{2}$ and $-\sqrt{2}$ on the diagonal. Therefore $A^6 - 6A^4 + 8A^2 + I = U^{-1}(D^6 - 6D^4 + 8D^2 + I)U = U^{-1}IU = I$. (2) A can be row reduced to

$$B = \begin{bmatrix} 1 & 0 & -2 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 4 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Therefore the general solution for Ax = 0 is a(2, -5, 1, 4, 0) + b(-2, -1, 1, 0, 4), and the vectors (2, -5, 1, 4, 0), (-2, -1, 1, 0, 4) form a basis of NulA.

Since $(NulA)^{\perp} = RowA$, the first three rows of B form a basis of $(NulA)^{\perp}$.

 $\operatorname{rank} A = \operatorname{dim} \operatorname{Col} A = \operatorname{dim} \operatorname{Row} A = 3.$

(3) The Gram-Schmidt process produces the orthogonal set

$$v_{1} = \begin{bmatrix} 0\\ 2\\ 1\\ 0 \end{bmatrix}, \quad v_{2} = \begin{bmatrix} 5\\ -1\\ 2\\ 0 \end{bmatrix}, \quad v_{3} = \begin{bmatrix} 1\\ 1\\ -1\\ -2 \end{bmatrix}$$

The extra vector in 2) is obtained by solving $u_1 \cdot x = u_2 \cdot x = u_3 \cdot x = 0$, which gives $v_4 = (1, 1, -2, 3)$. The distance from y to span $\{u_1, u_2, u_3\}$ is the length of the projection of y in v_4 direction, which is

dist =
$$\left\|\frac{y \cdot v_4}{v_4 \cdot v_4}v_4\right\| = \frac{|y \cdot v_4|}{\|v_4\|} = \sqrt{\frac{3}{5}}.$$

(4) The eigenvalues of A are 1, 2, 3, 4, 5. Since A has five distinct eigenvalues, A is diagonalizable. The eigenvalues of $P^{-1}A^{1997}P$ are the same as the eigenvalues of A^{1997} , which are $1^{1997} = 1, 2^{1997}, 3^{1997}, 4^{1997}, 5^{1997}$. (5) 1) dim(Nul A^T)^{\perp} = dim ColA = rankA = 3; 2) The projection of -y to W^{\perp} is -x. Therefore the projection of -y to W is (-y) - (-x) = x - y; 3) $\lambda^2 - 3\lambda + 2 = 0, 2 \Longrightarrow \lambda = 0, 1, 2, 3 \Longrightarrow \lambda^2 = 0, 1, 4, 9.$

- (6) 1) If a, b, c are distinct, then the eigenvector of $\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$ are e_1, e_2, e_3 , and eigenvalues are $a, b, b_1 = 0$.
- c. We may choose A to be diagonal with a = 0, b = 1, c = 2, and B with a = 2, b = 0, c = 1.
 2) If B = P⁻¹AP, then A and B have the same eigenvalues but the eigenvectors are transformed by
- P. From this it is easy to construct example. 3) Choose A not diagonalizable. Then B = -A is not diagonalizable. But 0 = A + B is diagonal. 4) $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Math 111 Final, Autumn 1997

(1) (10 points) Consider the matrix

$$A = \begin{bmatrix} 2 & -3 & 6 & 2 & 5 \\ -2 & 3 & -3 & -3 & -4 \\ 4 & -6 & 9 & 5 & 9 \\ -2 & 3 & 3 & -4 & 1 \end{bmatrix}.$$

1) Find the rank of A;

2) Find the dimensions of the row space $R(A^t)$, the column space R(A), the null N(A) of A, and the null $N(A^t)$ of A^t .

(2) (20 points) Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & 1 & 2\\ 1 & 4 & -3 & -2\\ 1 & -1 & 2 & 3 \end{bmatrix}.$$

1) Find an orthogonal basis of the column space R(A);

2) Extend the orthogonal basis of R(A) to an orthogonal basis of the whole Euclidean space;

3) Find an orthogonal basis of the orthogonal complement of the row space R(A);

4) Find the distance from (1, 1, 1, 1) to the row space R(A).

(3) (15 points) Consider

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 1 \end{bmatrix}.$$

1) Find eigenvalues and eigenvectors of A;

2) What are the geometric and algebraic multiplicities of the eigenvalues;

3) Is A diagonalizable? If not, give reason. If yes, find invertible S and diagonal D, such that $A = SDS^{-1}$.

(4) (10 points) Consider the matrix

$$A = \left[\begin{array}{rrr} -7 & 24\\ -2 & 7 \end{array} \right].$$

1) Diagonalize A;

2) Use the diagonalization of A to compute A^{1997} . Do not try to directly multiply A 1997 times. (5) (15 points) Consider the space P^4 with inner product $\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx$. Consider the subspace S spanned by $1 + x^2, (1 - x)(1 + x^2), x(1 + x^2)$.

1) Find an orthogonal basis of S;

2) Find the orthogonal projection of 1 on S;

3) Find the orthogonal projection of 7 on S^{\perp} .

(6) (12 points)

1) Find an example of two linearly dependent sets $\{v_1, v_2, v_3\}, \{w_1, w_2, w_3\}$, such that

 $\{v_1 + w_1, v_2 + w_2, v_3 + w_3\}$ is linearly independent;

2) Find an example of 3×3 matrices A and B, such that rank of A = 1, nullity of B = 1, and rank of (A + B) = 3.

3) Find an example of 2×2 matrices A and B, such that A and B are not diagonalizable but AB is diagonalizable;

4) Find an example of 2×2 matrices A and B, such that A and B are diagonalizable but AB is not diagonalizable.

(7) (18 points) True or False (no reason needed)

1) Rank of $A_{7\times 5}$ is $5 \Longrightarrow$ Rows of A linearly independent;

2) Rank of $A_{7\times 5}$ is 5 \Longrightarrow Columns of A linearly independent;

3) Rank of $A_{7\times 5}$ is $5 \Longrightarrow \dim N(A) = 0;$

4) Rank of $A_{7\times 5}$ is $5 \Longrightarrow \dim N(A^t) = 0;$

5) Rank of $A_{7\times 5}$ is 5 \Longrightarrow Solution of Ax = 0 is unique;

6) Rank of $A_{7\times 5}$ is $5 \Longrightarrow Ax = b$ has solution for all b;

7) $\{u_1, \dots, u_n\}$ is an orthogonal basis with respect to $\langle \rangle \Rightarrow \{u_1, \dots, u_n\}$ is an orthogonal basis with respect to $2 \langle \rangle$;

8) $\{u_1, \dots, u_n\}$ is an orthonormal basis with respect to $\langle \rangle \Longrightarrow \{u_1, \dots, u_n\}$ is an orthonormal basis with respect to $2 \langle \rangle$;

9) $u \perp w, v \perp w \Longrightarrow 2u - 3v \perp w;$

10) $u \perp v$ and L is a linear transformation $\implies L(u) \perp L(v)$;

11) The orthogonal projection of u and v on S are x and $y \implies$ The orthogonal projection of u + v on S is x + y;

12) The orthogonal projection of u on S is $x \implies$ The orthogonal projection of 2u on S^{\perp} is 2u - 2x;

13) λ is an eigenvalue of $A \Longrightarrow \lambda$ is an eigenvalue of A^t ;

14) v is an eigenvector of $A \Longrightarrow v$ is an eigenvector of A^t ;

15) A is diagonalizable $\implies A^2$ is diagonalizable;

16) λ is an eigenvalue of A and μ is an eigenvalue of $B \Longrightarrow \lambda \mu$ is an eigenvalue of AB;

17) $A \neq I \implies 1$ is not an eigenvalue of A;

18) If A and B have the same eigenvalues, then A is diagonalizable $\implies B$ is diagonalizable.

Answer to Math 111 Final, Autumn 1997

(1) After row operation, A becomes

Thus the rank of A is 3. The dimensions of the row space and the column space are 3, because they are the same as the rank. The dimension of the null of A is 5-3=2, and the dimension of the null of A^t is 4-3=1.

(2) After row operation, A becomes

1	0	1	2]	
0	1	-1	-1	
0	0	0	0	

A basis of R(A) is the first two columns (1, 1, 1), (0, 4, -1). By Gram-Schmidt, we get orthogonal basis $v_1 = (1, 1, 1)$, $v_2 = (1, -3, 2)$ of R(A). We need one more vector for an orthogonal basis of \mathbf{R}^3 . Solving $\langle v_1, v \rangle = 0$, $\langle v_2, v \rangle = 0$ gives v = c(-5, 1, 4). Thus $v_1, v_2, v_3 = (-5, 1, 4)$ is an orthogonal basis of \mathbf{R}^3 .

The orthogonal complement of $R(A^t)$ is N(A). From the row reduction of A we get a basis (-1, 1, 1, 0), (-2, 1, 0, 1). By Gram-Schmidt, we get orthogonal basis $w_1 = (-1, 1, 1, 0)$, $w_2 = (1, 0, 1, -1)$ of $N(A) = R(A^t)^{\perp}$.

The orthogonal projection of (1, 1, 1, 1) onto $R(A^t)^{\perp}$ is $1/3w_1 + 1/3w_2 = 1/3(0, 1, 2, -1)$. The distance from (1, 1, 1, 1) to $R(A^t)$ is $||1/3(0, 1, 2, -1)|| = \sqrt{2/3}$.

(3) The eigenvalues are $\lambda_1 = 1$, $\lambda_2 = 2$. The algebraic multiplicities for both eigenvalues are 2.

For $\lambda_1 = 1$, the eigenspace has basis $v_1 = (0, 0, 0, 1)$. Hence the geometric multiplicity for λ_1 is 1. For $\lambda_2 = 2$, the eigenspace has basis $v_2 = (0, 0, 1, 2)$. Hence the geometric multiplicity for λ_2 is also 1.

A is not diagonalizable because we have only two linearly independent eigenvectors. Four such vectors are needed for diagonalization.

(4) The eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = -1$. The eigenspaces have bases (3, 1), (4, 1). Thus

$$A = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}^{-1}$$

and

$$A^{1997} = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^{1997} \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}^{-1} = A = \begin{bmatrix} -7 & 24 \\ -2 & 7 \end{bmatrix}.$$

(5) A basis of S is $1 + x^2$, $(1 - x)(1 + x^2)$. By applying Gram-Schmidt to this, we obtain orthogonal basis $1 + x^2$, $x(1 + x^2)$ of S. By the usual formula, the orthogonal projection of 1 onto S is $5/7(1 + x^2)$. Then the orthogonal projection of 7 onto S is $7(5/7(1 + x^2)) = 5 + 5x^2$, and the orthogonal projection of 7 onto S^{\perp} is $7 - (5 + 5x^2) = 2 - 5x^2$.

(6)

1) Let $\{u_1, u_2, u_3\}$ be independent. Take $\{v_1, v_2, v_3\} = \{u_1, u_2, 0\}$ and $\{w_1, w_2, w_3\} = \{0, 0, u_3\}$;

2) A is diagonal with 1,0,0 on diagonal. B is diagonal with 0,1,1 on diagonal. The A + B = I has rank 3;

3) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ are not diagonalizable. $AB = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ is diagonalizable (two distinct eigenvalues);

(a) $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -1 \\ 0 & 1 \end{bmatrix}$ are diagonalizable (two distinct eigenvalues). $AB = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not diagonalizable.

(7) F, T, T, F, T, F; T, F, T, F, T, T; T, F, T, F, F, F.

Math 111 Final, Spring 1998

(1) (20 points) Consider the matrix

$$A = \begin{bmatrix} 1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 0 & 1 & 1 & 3 & 4 \\ 1 & 2 & 5 & 13 & 5 \end{bmatrix}.$$

1) Find a basis for ColA;

2) Find a basis for NulA;

3) Find the rank of A and dimensions of ColA, RowA, NulA, NulA^T;

4) Show that first, third, and the fifth columns of A linearly independent;

5) Is it possible to find four columns of A that are linearly independent? Explain. (2) (20 points) Consider

$$A = \begin{bmatrix} -5 & 2 & -1 \\ 2 & -2 & -2 \\ -1 & -2 & -5 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}$$

1) Find an orthogonal basis of eigenvectors for A;

2) Find the orthogonal projections of b onto the eigenspaces;

3) Find the distances from b to the eigenspaces;

4) Compute $A^6 - 72A^4 + 1296A^2$ (Note: $1296 = 36^2$);

5) Find the quadratic form $Q(x_1, x_2, x_3)$ corresponding to A and use an orthogonal change of variable to transform Q into one with no cross-product term.

(3) (15 points) Consider polynomials $p_1(t) = -1 + 2t + t^2$, $p_2(t) = 1 + 2t + t^3$, $p_3(t) = -2 + t^2 - t^3$, $q(t) = a + 2t - t^2 + (a - 1)t^3$.

1) For what a is q in the span of p_1, p_2, p_3 ;

2) Find a basis of the span of p_1, p_2, p_3 ;

3) For the a you find in 1), find the coordinates of q relative to the basis you find in 2);

4) Extend the basis in 2) to a basis of P_3 , the space of polynomials of degree ≤ 3 .

(4) (15 points) Consider the subspace V of \mathbf{R}^3 given by $x_1 - x_2 + 2x_3 = 0$.

1) Find an orthogonal basis of V;

2) Find the matrix P for the orthogonal projection onto V;

3) Find a diagonalization of P.

(5) (10 points) For which a, the matrix $A = \begin{bmatrix} 1 & -a \\ a & 3 \end{bmatrix}$ is diagonalizable. For which a, the matrix A is not diagonalizable. Please provide full explanation.

(6) (20 points) True or False (no reason needed)

- 1) If all eigenvalues of A are nonzero, then A is invertible;
- 2) If all eigenvalues of A are zero, then A = O;
- 3) If A is diagonalizable, then A^3 is diagonalizable;
- 4) If A^3 is diagonalizable, then A is diagonalizable;
- 5) If vectors v_1, v_2, \dots, v_k are orthogonal, then they are linearly independent;
- 6) If vectors v_1, v_2, \dots, v_k are orthonormal, then they are linearly independent;

7) $\operatorname{proj}_W(2u+3v) = 2\operatorname{proj}_W u + 3\operatorname{proj}_W v;$

- 8) $\operatorname{proj}_{\operatorname{span}(u_1, u_2)} v = \operatorname{proj}_{u_1} v + \operatorname{proj}_{u_2} v$
- 9) If u is an eigenvector of A and B, then u is an eigenvector of AB;
- 10) If u and v are eigenvectors of A and B, then u + v is an eigenvector of A + B;
- 11) If u is an eigenvector of A, then u is an eigenvector of A^T ;

12) If λ is an eigenvalue of A, then λ is an eigenvalue of A^T ;

- 13) If columns of an $n \times n$ matrix U is an orthonormal basis of \mathbf{R}^n , then $U^T U$ is diagonal;
- 14) If for an $n \times n$ matrix U, $U^T U$ is diagonal, then the columns of U an orthonormal basis of \mathbb{R}^n ;
- 15) If $A_{3\times 5}x = b$ has solution for all b, then rank A = 3;
- 16) If $A_{3\times 5}x = b$ has solution for all b, then rank A = 5;
- 17) If $A_{3\times 5}x = b$ has solution for all b, then $A^T x = 0$ has only trivial solution;
- 18) Rank of $A_{3\times 5}$ is 3 implies columns of A are linearly independent;
- 19) Rank of $A_{3\times 5}$ is 3 implies rows of A are linearly independent;
- 20) Rank of $A_{3\times 5}$ is 3 implies Ax = 0 has only trivial solution.

Answer to Math 111 Final, Spring 1998

(1) A can be row reduced to

$$B = \begin{bmatrix} 1 & 0 & 3 & 7 & 0 \\ 0 & 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Therefore the first, second, and the fifth columns of A forms a basis of ColA. The general solution for Ax = 0 is $x_3(-3, -1, 1, 0, 0) + x_4(-7, -3, 0, 1, 0)$, and the vectors (-3, -1, 1, 0, 0), (-7, -3, 0, 1, 0) form a basis of NulA.

 $\operatorname{rank} A = 3$, $\operatorname{dim} \operatorname{Col} A = 3$, $\operatorname{dim} \operatorname{Row} A = 3$, $\operatorname{dim} \operatorname{Nul} A = 2$, $\operatorname{dim} \operatorname{Nul} A^T = 1$.

The same row operations that takes A to B carries the (1, 3, 5)-columns of A to the (1, 3, 5)-columns of B. Since in the (1, 3, 5)-column matrix of B, all three columns are pivots, we see that the (1, 3, 5)-columns of A are linearly independent.

The maximal number of linearly independent columns of A is rankA = 3. Therefore any four columns of A must be linearly dependent.

(2) det $(A - \lambda I) = -\lambda(6 + \lambda)^2$. For the eigenvalue $\lambda = 0$, the eigenspace E_0 has basis $v_1 = (-1, -2, 1)$. For the eigenvalue $\lambda = -6$, the eigenspace E_{-6} has basis $v_2 = (1, 0, 1)$, $v_3 = (-2, 1, 0)$. Applying Gram-Schmidt to v_2 , v_3 , we get an orthogonal basis $v_2 = (1, 0, 1)$, $u_3 = (-1, 1, 1)$ for E_{-6} . Thus v_1 , v_2 , u_3 is an orthogonal basis of eigenvectors of A. Dividing length, this leads to

$$A = UDU^{-1}, \quad U = \begin{bmatrix} -1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ -2/\sqrt{6} & 0 & 1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -6 \end{bmatrix},$$

where U is an orthogonal matrix.

From the usual formula, the orthogonal projections $\text{proj}_{E_0}b = (-1, -2, 1)$, $\text{proj}_{E_{-6}}b = (1, 1, 3)$. Then $dist(b, E_0) = ||(1, 1, 3)|| = \sqrt{11}$, $dist(b, E_{-6}) = ||(-1, -2, 1)|| = \sqrt{6}$.

Since $D^6 + 72D^4 + 1296D^2 = O$, we have $A^6 + 72A^4 + 1296A^2 = O$.

The quadratic form corresponding to A is $Q(x_1, x_2, x_3) = -5x_1^2 - 2x_2^2 - 5x_3^2 + 4x_1x_2 - 2x_1x_3 - 4x_2x_3$. With the orthogonal change of variable x = Uy, we get $Q = -6y_2^2 - 6y_3^2$. (3) The problem is turns into a problem in \mathbb{R}^4 with vectors $[p_1] = (-1, 2, 1, 0), [p_2] = (1, 2, 0, 1), [p_3] = (-2, 0, 1, -1), and <math>[q] = (a, 2, -1, a - 1)$. Row operation on the matrix $([p_1], [p_2], [p_3], [q])$ gives

1	0	1	-1]
0	1	-1	2
0	0	0	a-3
0	0	0	0

The answer for 1) is then a = 3. We also find p_1 , p_2 is a basis of the span of p_1, p_2, p_3 . Moreover, by deleting the third column we find the solution $x_1 = -1$ and $x_2 = 2$ in case a = 3. Therefore $q(t) = 3 + 2t - t^2 + 2t^3$ has coordinate (-1, 2) relative to the basis p_1, p_2 .

To extend the basis to a basis of P_3 , we note that $[p_1]$, $[p_2]$, e_1 , e_2 for a basis of \mathbb{R}^4 , therefore p_1 , p_2 , 1, t form a basis of P_3 .

(4) A basis of V is given by (1, 1, 0), (-2, 0, 1). Applying Gram-Schmidt to the basis, we get an orthogonal basis (1, 1, 0), (-1, 1, 1).

The orthogonal projection of $x = (x_1, x_2, x_3)$ onto V is $\frac{x_1+x_2}{2}(1, 1, 0) + \frac{-x_1+x_2+x_3}{3}(-1, 1, 1) = \frac{1}{6}(5x_1+x_2-2x_3, x_1+5x_2+2x_3, -2x_1+2x_2+2x_3)$. The matrix of the projection is then

$$P = \frac{1}{6} \begin{bmatrix} 5 & 1 & -2 \\ 1 & 5 & 2 \\ -2 & 2 & 2 \end{bmatrix}$$

P has eigenvectors (1,1,0), (-1,1,1), with eigenvalue 1, and eigenvector (1,-1,2), with eigenvalue 0. Therefore

$$P = UDU^{-1}, \quad U = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(5) $det(A - \lambda I) = \lambda^2 - 4\lambda + 3 + a^2$. Therefore A has two distinct eigenvalues $\Leftrightarrow a \neq \pm 1$. In this case, A is diagonalizable.

In case a = 1, we have $\lambda = 2$ and $A - \lambda I = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$ and can find only one eigenvector. Therefore A is not diagonalizable. Similarly, if a = -1, then $\lambda = 2$ and $A - \lambda I = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$. Again we can find only one eigenvector. Therefore A is still not diagonalizable. (6) T; F; T; F; F; T; T; F; T; F.

Math 111 Final, Autumn 1999, section 1

(1) (10 points) Consider

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 3 & 2 & 1 \end{bmatrix}, \qquad u = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}.$$

1) Find eigenvalues and eigenvectors of A;

2) Can you find invertible P and diagonal D, such that $A = PDP^{-1}$? Explain;

3) Find general formula for $A^n u$.

(2) (20 points) Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & -3 & 1 \\ -2 & 1 & 1 & 0 \\ -1 & 1 & -2 & 1 \\ 0 & 1 & -5 & 2 \\ 3 & -1 & -4 & 1 \end{bmatrix}, \qquad v = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \\ 1 \end{bmatrix}, \qquad w = \begin{bmatrix} 1 \\ -1 \\ a - 1 \\ 1 \\ a + 1 \end{bmatrix}$$

1) Find an orthogonal bases of ColA;

2) Find the orthogonal projection of v on ColA;

3) Determine a for which w is in ColA;

4) Find the orthogonal projection of -2v on $\operatorname{Nul}A^T$;

5) What is the maximal number of linearly independent rows of A? Explain;

6) What is the dimension of $NulA^T$? Explain.

(3) (15 points) With as little computation as possible, determine which of the following is diagonalizable.

$$A = \begin{bmatrix} 3 & -7 & 9 & 5 \\ -7 & 1 & 1 & 2 \\ 9 & 1 & -2 & 1 \\ 5 & 2 & 1 & -4 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 0 & 0 & 0 \\ -7 & 1 & 0 & 0 \\ 5 & 2 & 1 & -4 \end{bmatrix},$$
$$C = \begin{bmatrix} 3 & -7 & 0 & 0 \\ -7 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & -4 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & -7 & 0 & 0 \\ -7 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & -1 & -4 \end{bmatrix}.$$

(4) (15 points) Consider four polynomials

$$p_1 = 1 + t$$
, $p_2 = -1 - t + t^2 + 2t^3$, $p_3 = 1 - t + t^2 + 3t^3$, $p_4 = t - t^2 - 3t^3$

in P_3 and the subspace H of P_3 spanned by p_1 , p_2 , p_3 .

1) Show that $\{p_1, p_2, p_3, p_4\}$ is a basis of P_3 ;

2) Which of $q = t^2 + t^3$ and $r = -1 + t + t^2 + t^3$ is in *H*. For the one in *H*, find the coordinates with respect to the basis $\{p_1, p_2, p_3\}$ of *H*;

3) Show that the restriction $D(p) = p' : H \to P_2$ of the derivative transformation on H is invertible. (5) (17 points) Circle the right answers (no reasons needed, multiple answers possible)

1) Suppose a linear transformation $T: M(2,3) \to P_3$ is onto. Then the dimension of the kernel of T is

 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$

2) Suppose u, v and u + v are nonzero. Then $\operatorname{Proj}_{u+v}(x+y)$ is equal to

$$\begin{aligned} &\operatorname{Proj}_{u}(x+y) + \operatorname{Proj}_{v}(x+y) \\ &\operatorname{Proj}_{u}x + \operatorname{Proj}_{v}y \\ &\operatorname{Proj}_{u+v}x + \operatorname{Proj}_{u+v}y \\ &\operatorname{Proj}_{u}x + \operatorname{Proj}_{v}x + \operatorname{Proj}_{u}y + \operatorname{Proj}_{v}y \end{aligned}$$

3) Suppose A is a symmetric 3×3 matrix, with $det(A - \lambda I) = (\lambda - 1)(\lambda + 2)^2$. Suppose (1, 2, 3) and (1, 1, 1) are eigenvectors with eigenvalue -2. Then the following are also eigenvectors of A

(-1, 2, -1) (3, 2, 1) (-1, -2, -3) (1, 2, 1) (2, 1, 2) (0, 1, 2)

4) Suppose the solution of the equation $A_{5\times 7}x = 0$ contains two free variables. Then the following are true

$$\operatorname{rank} A = 2$$
 $\operatorname{dim} \operatorname{Nul} A = 2$ $\operatorname{dim} \operatorname{Nul} A^T = 2$

$\operatorname{rank} A = 3$	$\dim \operatorname{Nul} A = 3$	$\mathrm{dim}\mathrm{Nul}A^T = 3$
$\operatorname{rank} A = 5$	$\operatorname{dimNul} A = 5$	$\mathrm{dim}\mathrm{Nul}A^T = 5$

- (6) (23 points) True or False (no reason needed)
 - 1) If Ax = 0 has only trivial solution, then the columns of A is a basis of ColA
 - 2) If Ax = 0 has only trivial solution, then the rank of A is the number of columns of A
 - 3) If Ax = 0 has only trivial solution, then the rank of A is the number of rows of A
 - 4) If Ax = b has solution for all b, then the columns of A is a basis of ColA
 - 5) If Ax = b has solution for all b, then the rank of A is the number of columns of A
 - 6) If Ax = b has solution for all b, then the rank of A is the number of rows of A
 - 7) If dim V = n and \mathcal{B} spans V, then \mathcal{B} contains at least n vectors
 - 8) If \mathcal{B} spans V and contains n vectors, then dim $V \ge n$
 - 9) If a linear transformation $T: V \to W$ is onto, then dim $V \ge \dim W$
 - 10) If a linear transformation $T: V \to W$ is one-to-one, then dim $V \ge \dim W$
 - 11) If a linear transformation $T: V \to W$ is invertible, then dim $V = \dim W$
 - 12) If A is invertible and diagonalizable, and B is not diagonalizable, then AB is not diagonalizable
 - 13) Any square matrix has at least one eigenvector
 - 14) There is a square matrix with no eigenvector
 - 15) All symmetric matrices are diagonalizable
 - 16) All diagonalizable matrices are symmetric
 - 17) If $A_{n \times n}$ has n distinct eigenvalues, then A is diagonalizable
 - 18) If $A_{n \times n}$ is diagonalizable, then A has n distinct eigenvalues
 - 19) Linearly independent eigenvectors have distinct eigenvalues
 - 20) Vectors in ColA are orthogonal to vectors in NulA
 - 21) Vectors in RowA are orthogonal to vectors in NulA
 - 22) Vectors in ColA are orthogonal to vectors in RowA
 - 23) For any A, $A^T A$ is always diagonalizable

Answer to Math 111 Final, Autumn 1999, section 1

(1) The eigenvalues are 1 and -1. For $\lambda_1 = 1$, we find only one eigenvector $v_1 = (0, 0, 1)$. For $\lambda_2 = -1$, we find another eigenvector $v_2 = (0, 1, -1)$. Since we do not have three eigenvectors, A is not diagonalizable. In other words, we cannot write $A = PDP^{-1}$.

From $u = 2v_1 + 3v_2$, we have $A^n u = 2\lambda_1^n v_1 + 3\lambda_2^n v_2 = \begin{cases} 2v_1 + 3v_2 = (0, 3, -1) & \text{for even } n \\ 2v_1 - 3v_2 = (0, -3, 5) & \text{for odd } n \end{cases}$.

(2) The row operation reduces [A, w] to

$$\begin{bmatrix}
1 & 0 & -3 & 1 & 1 \\
0 & 1 & -5 & 2 & 1 \\
0 & 0 & 0 & 0 & a-1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Since the first two columns $x_1 = (1, -2, -1, 0, 3)$ and $x_2 = (0, 1, 1, 1, -1)$ are pivot columns of A, they form a bases of ColA. Then

$$u_1 = x_1 = (1, -2, -1, 0, 3), \quad u_2 = x_2 - \operatorname{Proj}_{u_1} x_2 = \frac{1}{5}(2, 1, 3, 10, 1)$$

is an orthogonal basis of ColA. By the usual formula for the orthogonal projection, we find $\operatorname{Proj}_{\operatorname{Col}A} v = (1, 0, 1, 2, 1)$.

From the row operation above, w is in ColA if and only if a = 1.

Since Nul A^T is the orthogonal complement of ColA, we have $\operatorname{Proj}_{\operatorname{Nul}A^T} v = v - \operatorname{Proj}_{\operatorname{Col}A} v = (-1, 0, -1, 1, 0)$, and $\operatorname{Proj}_{\operatorname{Nul}A^T} (-2v) = -2\operatorname{Proj}_{\operatorname{Nul}A^T} v = (2, 0, 2, -2, 0)$.

The maximal number of linearly independent rows of A is the rank of A. From the row operation above, this number is 2.

The dimension of $\text{Nul}A^T$ is 5-2=3, where 5 is the number of rows and 2 is the rank. (3) A is diagonalizable because it is symmetric.

B has four distinct eigenvalues 3, 1, -2, -4. Therefore it is diagonalizable.

The characteristic equation of C is $[(\lambda - 3)(\lambda - 1) - (-7)(-7)][(\lambda + 2)(\lambda + 4) - (1)(1)] = (\lambda^2 - 4\lambda - 46)(\lambda^2 + 6\lambda + 7) = 0$. It is then easy to see that the equation has four distinct solutions. Therefore C is diagonalizable.

The characteristic equation of D is $[(\lambda - 3)(\lambda - 1) - (-7)(-7)][(\lambda + 2)(\lambda + 4) - (-1)(1)] = (\lambda^2 - 4\lambda - 46)(\lambda^2 + 6\lambda + 9) = 0$. We have three eigenvalues $2 \pm \sqrt{50}$, 4. All of them has one eigenvector each. Since we do not have enough eigenvectors, D is not diagonalizable.

(4) By the usual translation $a + bt + ct^2 + dt^3 \leftrightarrow (a, b, c, d)$, we carry out the row operation for $[p_1, p_2, p_3, p_4, q, r]$:

1	-1	1	0	0	-1		1	-1	1	0	0	-1]	
1	-1	-1	1	0	1		0	1	1	-1	1	1	
0	1	1	-1	1	1	\rightarrow	0	0	1	-1	-1	-1	
0	2	3	-3	1	1		0	0	0	-1	-2	0	

From the first four columns, we see that all columns in $[p_1, p_2, p_3, p_4]$ is pivotal. Therefore $\{p_1, p_2, p_3, p_4\}$ is a basis of P_3 .

From the 1st, 2nd, 3rd, and the 5th columns, we find that q is not in the span H of $\{p_1, p_2, p_3\}$. From the 1st, 2nd, 3rd, and the 6th columns, we find that r is in the span H of $\{p_1, p_2, p_3\}$. Continuing this row operation, we further find the solution $r = 2p_1 + 2p_2 - p_3$. Therefore the coordinates of r with respect to the basis $\{p_1, p_2, p_3\}$ of H is (2, 2, -1).

The linear transformation D is between two vector spaces of the same dimension 3. Therefore we only need to show D to be onto in order for D to be an isomorphism. Since $p \in H$, we have $p = c_1p_1 + c_2p_2 + c_3p_3$. Then we need to show $D(p) = c_1p'_1 + c_2p'_2 + c_3p'_3 = c_1(1) + c_2(-1 + 2t + 4t^2) + c_3(-1 + 2t + 6t^2) = b_1 + b_2t + b_3t^2$ has solution for all b_1 , b_2 , b_3 . By the usual translation $a + bt + ct^2 \leftrightarrow (a, b, c)$, we carry out the row operation for $[p'_1, p'_2, p'_3]$:

1	-1	-1		1	$^{-1}$	-1	1
0	2	2	\rightarrow	0	2	2	
0	4	6		0	0	2	

Since there is no row like [0, 0, 0] in the row echelon form, we see that $\{p'_1, p'_2, p'_3\}$ indeed span P_2 . This implies that the solution always exist.

Remark: The isomorphism can also be proved by showing H is one-to-one, or more precisely, H(p) = 0and $p \in H$ implies p = 0.

(5) 1) The dimension of the kernel is $\dim M(2,3) - \dim P_3 = 2$

2) Only the third one is correct

3) The eigenvectors of A are either orthogonal to (1, 2, 3) and (1, 1, 1) (so eigenvalue= 1), or a linear combination of (1, 2, 3) and (1, 1, 1) (so eigenvalue= -2). By these criteria, we find

$$(-1, 2, -1)$$
 $(3, 2, 1)$ $(-1, -2, -3)$ $(0, 1, 2)$

are eigenvectors of A

4) The condition means dimNulA = 2. Then rankA = 7 - 2 = 5, and dimNul $A^T = 5 - 5 = 0$

 $\begin{array}{c} (6) \ \mathrm{T}, \ \mathrm{T}, \ \mathrm{F}, \ \mathrm{F}, \ \mathrm{F}, \ \mathrm{T} \\ \mathrm{T}, \ \mathrm{F}, \ \mathrm{T}, \ \mathrm{F}, \ \mathrm{T}, \ \mathrm{F} \end{array}$

T, F, T, F, T, F

F, F, T, F, T

Math 111 Final, Autumn 1999, section 2

(1) (20 points) Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 3 & 2 & 1 \\ -1 & 1 & 2 & -2 \\ 1 & -2 & -2 & 1 \\ 4 & 1 & 3 & 2 \end{bmatrix}, \qquad x = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

1) Determine whether x and y are in ColA

2) Find a basis of NulA

3) Find the dimensions of NulA, Nul A^T , RowA, ColA

4) Find the orthogonal projection and the distance of v = (1, 2, 3, 4) to RowA

(2) (15 points) Consider the quadratic form $Q(x_1, x_2, x_3) = 3x_2^2 + 4x_1x_2 - 2x_1x_3 - 4x_2x_3$

1) Find symmetric matrix A such that $Q(x) = x^T A x$

2) Find orthogonal matrix U, such that the change of variable x = Uy transforms Q into a quadratic form without cross-product term

(3) (15 points) Consider the matrix

$$A = \begin{bmatrix} -1 & a & b \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

Find the condition on a and b so that A is diagonalizable. In the diagonalizable case, find invertible P and diagonal D, such that $A = PDP^{-1}$.

(4) (20 points) Consider vectors

$$p_1 = 1 + 2t + t^2$$
, $p_2 = 1 + 3t$, $p_3 = 1 + 2t^2$

of the space P_2 of polynomials of degree ≤ 2 . Consider a linear transformation $T: P_2 \to \mathbb{R}^3$ satisfying

$$T(p_1) = (1, 0, 1),$$
 $T(p_2) = (0, 1, 1),$ $T(p_3) = (1, -1, 0),$

1) Show that p_1, p_2, p_3 form a basis of P_2

- 2) Find the coordinates of the monomials 1, t and t^2 with respect to the basis $\{p_1, p_2, p_3\}$
- 3) Find formula for $T(a + bt + ct^2)$
- 4) Is T onto? Is T one-to-one? Explain

5) Can you find an onto but not one-to-one linear transformation from P_2 to \mathbf{R}^3 ?

6) Can you find an onto and one-to-one linear transformation from P_2 to \mathbb{R}^3 ?

(5) (30 points) True or False (no reason needed)

1) If $u_1 \perp v_1$ and $u_2 \perp v_2$, then $u_1 + u_2 \perp v_1 + v_2$

2) If $u \perp v$, then for any scalars a and b, $au \perp bv$

3) If a subspace W is the orthogonal complement of another subspace V, then V is also the orthogonal complement of W

4) If A has an orthogonal basis of eigenvectors, then A^T also has an orthogonal basis of eigenvectors

5) If A and B have orthogonal basis of eigenvectors, then AB also has an orthogonal basis of eigenvectors

6) If A and B have orthogonal basis of eigenvectors, then A + B also has an orthogonal basis of eigenvectors

7) Rows of U are orthogonal if and only if $U^T U$ is diagonal

8) Columns of U are orthogonal if and only if $U^T U$ is diagonal

9) If T is a linear transformation, and $T(v_1), T(v_2), \dots, T(v_k)$ are linearly independent, then v_1, v_2, \dots, v_k are linearly independent

10) If v_1, \dots, v_k span a subspace H, then v_1, \dots, v_k is a basis of H

11) If v_1, \dots, v_k are linearly independent vectors in a subspace H, then v_1, \dots, v_k is a basis of H

- 12) If all eigenvalues of A are non-zero, then A is invertible
- 13) If A is invertible, then all eigenvalues of A are non-zero
- 14) If rank $A_{m \times n} = n$, then columns of A span \mathbf{R}^m

15) If rank $A_{m \times n} = n$, then columns of A are linearly independent

Answer to Math 111 Final, Autumn 1999, section 2

(1) Row operation on [A, x, y] gives

1	2	3	0	1	1]
0	$^{-1}$	0	$^{-1}$	1	0
0	0	1	$^{-1}$	1	0
0	0	0	0	0	1
0	0	0	0	0	0

Therefore x is in ColA and y is not in ColA.

By solving Ax = 0 (using first four columns of the row operation, we find a basis u = (-1, -1, 1, 1) of NulA. The row operation also tells us the rank of A is 3. Therefore, dim NulA = 1, dim NulA^T = 5-3=2, $\dim \operatorname{Row} A = \dim \operatorname{Col} A = 3.$

Using the fact that RowA is an orthogonal complement of NulA, we have

$$\begin{array}{rcl} \mathrm{Proj}_{\mathrm{Nul}A}v & = & \frac{v \cdot u}{u \cdot u}u = \frac{4}{4}(-1, -1, 1, 1) = (-1, -1, 1, 1) \\ \mathrm{dist}(v, \mathrm{Row}A) & = & ||\mathrm{Proj}_{\mathrm{Nul}A}v|| = 2 \\ \mathrm{Proj}_{\mathrm{Row}A}v & = & v - \mathrm{Proj}_{\mathrm{Nul}A}v = (2, 3, 2, 3) \end{array}$$

(2) The symmetric matrix A is

$$A = \begin{bmatrix} 0 & 2 & -1 \\ 2 & 3 & -2 \\ -1 & -2 & 0 \end{bmatrix}$$

It has two eigenvalues -1, 5. For $\lambda_1 = -1$, we solve (A + I)v = 0 to find eigenvectors $v_1 = (1, 0, 1)$, $v_2 = (-2, 1, 0)$. For $\lambda_1 = 5$, we solve (A - 5I)v = 0 to find eigenvector $v_3 = (-1, -2, 1)$. We use the Gram-Schmidt process to orthogonalize v_1, v_2 and get

$$u_1 = v_1 = (1, 0, 1), \quad u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = (-1, 1, 1).$$

Then we normalize the orthogonal basis u_1, u_2, v_3 to get the orthogonal matrix

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

The change of variable x = Uy transforms Q into $Q(Uy) = -y_1^2 - y_2^2 + 5y_3^2$. (3) The characteristic equation is $(-1 - \lambda)[(1 - \lambda)^2 - 2^2] = -(\lambda - 3)(\lambda + 1)^2$. For eigenvalue $\lambda_1 = 3$, we find exactly one eigenvector $(\frac{a+b}{4}, 1, 1)$. For eigenvalue $\lambda_1 = -1$, we need to solve the system $ax_2 + bx_3 = -1$ $0, 2x_2 + 2x_3 = 0$, which already has x_1 as one free variable. In order to diagonalize, we have to have another free variable among x_2 and x_3 . The condition for this is a = b. In this case, the general solution of the homogeneous equation is $x_1(1,0,0) + x_3(0,-1,1)$, and we get two eigenvectors (1,0,0) and (0,-1,1).

Thus A is diagonalizable if and only if a = b. In this case, $A = PDP^{-1}$ for (note that $\frac{a+b}{4} = \frac{a}{2}$)

$$P = \begin{bmatrix} \frac{a}{2} & 1 & 0\\ 1 & 0 & -1\\ 1 & 0 & 1 \end{bmatrix}, \qquad D = \begin{bmatrix} 3 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix}.$$

(4) Using the translation $a + bt + ct^2 \leftrightarrow (a, b, c)$, we carry out row operation on $[p_1, p_2, p_3, 1, t, t^2]$ as follows

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{row op.}} \begin{bmatrix} 1 & 0 & 0 & -6 & 2 & 3 \\ 0 & 1 & 0 & 4 & -1 & -2 \\ 0 & 0 & 1 & 3 & -1 & -1 \end{bmatrix},$$

From the first three columns, we see that p_1 , p_2 , p_3 form a basis of P_2 The row operation also gives us the coordinates of the monomials 1, t and t^2 with respect to the basis $\{p_1, p_2, p_3\}$:

$$[1] = (-6, 4, 3), \qquad [t] = (2, -1, -1), \qquad [t^2] = (3, -2, -1),$$

In particular, we get

$$T(1) = -6T(p_1) + 4T(p_2) + 3T(p_3) = (-3, 1, 2)$$

$$T(t) = 2T(p_1) - T(p_2) - T(p_3) = (1, 0, 1)$$

$$T(t^2) = 3T(p_1) - 2T(p_2) - T(p_3) = (2, -1, 1)$$

Therefore

$$T(a + bt + ct^{2}) = a(-3, 1, 2) + b(1, 0, 1) + c(2, -1, 1) = (-3a + b + 2c, a - c, 2a + b + c).$$

We may translate and get the matrix of T. The row operation

Γ	-3	1	2		1	0	-1
	1	0	-1	$\xrightarrow{\text{row op.}}$	0	1	-1
L	-2	1	1		0	0	0

implies that T is not onto (there is [0,0,0]) and not one-to-one (the third column is not pivot).

Since both P_2 and \mathbf{R}^3 have the same dimension 3, a linear transformation between them is onto if and only if it is one-to-one. In particular, we cannot find an onto but not one-to-one linear transformation from P_2 to \mathbf{R}^3 . The same dimension also implies we can find an onto and one-to-one linear transformation from P_2 to \mathbf{R}^3 . $T(a + bt + ct^2) = (a, b, c)$ is such an example. (5)

F, T, T, T, FT, F, T, T, F F, T, T, F, T