
Department of Computer Science The Hong Kong University of Science and Technology

COMP 252 (Fall 2000) Makeup Mid-Term Examination 1

COMP 252 Principles of Systems Software

Fall semester 2000

Mid-Term Examination
Date: October 22, 2000 Time: 1:00pm-3:00pm

Instructions:

1. This examination paper consists of 8 pages and 6 questions.

2. Please write your name, student ID and Email on this page.

3. For each subsequent page, please write your student ID at the top of the page in the space 
provided.

4. Please answer all the questions within the space provided on the examination paper. You 
may use the back of the pages for your rough work.

5. Please read each question very carefully and answer the question clearly and to the point. 
Make sure that your answers are neatly written, readable and legible.

6. Show all the steps you use in deriving your answer, wherever appropriate.

7. For each of the questions assume that the concepts are known to the graders. Concentrate 
on answering to the point what is asked. Do not define or describe the concepts.

Question Points Score

1 10

2 10

3 20

4 20

5 20

6 20

TOTAL 100

Name: Student ID: Email:
SOLUTION



Dept. of CS/HKUST

COMP 252 (Fall 2000) makeup Mid-Term Examination 2

Student ID:____________________

1a. Explain briefly the difference between the job queue and the ready queue. 

- Job queue is keeping the jobs on the disk which are submitted to the system but which are not 
running yet.

-Ready queue is keeping processes/threads which are loaded into the memory and which have 
started their execution.

1b. Explain briefly the difference between multiprogramming and time-sharing. 

In multiprogramming a process is holding a CPU until it needs some I/O operation or waits for 
an event.

In time-sharing a process can hold a CPU up to the size of the time-slice (quantum) or until it 
asks for an I/O (event) whichever comes first.

1c. Explain briefly the difference between spinlock semaphores and semaphores with no busy-
waiting. 

Spinlock semaphores use busy waiting. There is no context switch (except for the timer inter-
rupt) when a process must wait on a lock. They are used when locks are expected to be held for 
a short time.

Semaphores without busy waiting put the calling thread/process on the waiting list if the of the 
sempahore was 0 at the moment when P() operation was invoked.

1d. Explain briefly the difference between the user level thread and the traditional process.

Multiple threads can execute in a single address space so that sharing of resources and data is 
easy. Creation and deletion of threads is much less expensive.

However, threads running in the same address space may interfere with one another if not 
properly synchronized.



Dept. of CS/HKUST

COMP 252 (Fall 2000) makeup Mid-Term Examination 3

Student ID:____________________

2. Explain briefly the following concepts in not more than two sentences each. 

a) Mutual exclusion in the Critical Section Problem

b) Aging

c) Blocking a process

d) Context switching

e) Non-preemptive scheduling

a) If multiple processes need to acces a critical section, they can do this only one process at a 
time.

b) Process which has spent a lot of CPU time will be penalized by decreasing its priority. In 
order to prevent starvation of such a process, its priority will be also raised gradually in propor-
tion to the time spent in the system.

c) process which has to wait for an I/O operation or for an event will be blocked, i.e. it will be 
put on the waiting queue for appropriate device or synchronization object.

d) Context switching is the action of copying of the contents of CPU registers into the PCB of 
the process which was running at the moment of context switch and loading the contents of 
PCB of the process which has to start running into CPU registers.

e) In non-preemptive scheduling, process (thread) which is currently running on the CPU can 
not be preepted by the higher priority process (thread) which arrives while its CPU burst was 
executed.



Dept. of CS/HKUST

COMP 252 (Fall 2000) makeup Mid-Term Examination 4

Student ID:____________________

3. Consider a 3-level feedback queue with Round-Robin Scheduling, as shown in Figure 1.

a) Construct a Gantt chart depicting the process scheduling for the set of processes speci-
fied in the above table of processes. 

b) Calculate the average waiting time for the schedule constructed in part a. 
If the process from the lower priority queue is preemted with the process from the higher prior-
ity queue, it will go to the end of the same queue and it will be sheduled again until it spends 
the remaining time quantum.

w1= 0+ (15-4) + (23-16) = 18
w2 = (4-2) + (20-8) = 14
w3 = (8-3) + (21-12) = 14
w4 = (12- 10) = 2
w5 = (16-16) + (34-20) = 14
w6 = (30-30) = 0
w7 = (35-35) = 0

w = 72/7= 8.86

Process P1 P2 P3 P4 P5 P6

CPU-burst 12 5 6 3 5 4 15

Arrival Time 0 2 3 10 16 30 35

Quantum = 4

Quantum = 8

FCFS
Figure 1.

P7

0 4 8 12 15 16 2021 23 30 34 35 50

P1 P2 P3 P4 1 P5 2 P3 P1 P6 5 P7

Q1 Q1 Q1 Q1

Q2

Q1

Q2

Q2 Q2 Q1

Q2

Q1 + Q2 + Q3



Dept. of CS/HKUST

COMP 252 (Fall 2000) makeup Mid-Term Examination 5

Student ID:____________________

4. Consider the following solution to a two-process critical section problem using the proce-
dure Swap as defined below:

---------------------------------------------------------
procedure Swap (var a, b: boolean);
var temp: boolean;
begin

temp := a;
a := b;
b := temp;

end;
---------------------------------------------------------
repeat

key := true;
repeat

Swap(lock, key);
until key = false;

critical section

lock := false;

remainder section

until false;
---------------------------------------------------------

a) Assuming Swap to be non-atomic, does the given solution satisfy the mutual exclusion 
requirement? Justify your answer with a detailed example with step-by-step explana-
tion. .

b) Assuming Swap to be atomic, does the given solution satisfy the bounded waiting 
requirement? Justify your answer with a detailed example with step-by-step explana-
tion. 

a) Suppose that lock was freee when P1 call Sawp(lock,key). If the context switch occurs after 
instruction temp:=a; and the other process P2 calls the Swap(lock,key) procedure, then P2 will 
get the acces to the critical section. Now suppose that P2 was context switched inside the criti-
cal section and P1 runs again. P1 will also gain to the critical section, so mutual exclusion is 
violated.
b) Bounded waiting is not satisfied. if Priority(P1)>priority(P2) then P1 can enter critical sec-
tion arbitrary many times before P2 gets into it.



Dept. of CS/HKUST

COMP 252 (Fall 2000) makeup Mid-Term Examination 6

Student ID:____________________

5. The Hong Kong marriage registry has implemented a hi-tech marriage registration scheme. 
The operation of this scheme can be described as follows. Marriage officers wait until a bride 
and a groom arrive, and a ready to get married. Once teh couple is ready, the officer takes them 
to sign the marriage register. The office has a single marriage register which must be accessed 
exclusively to register a mariage. The couple wait until the registration is completed, before 
leaving. Once the registration is completed, the officer goes back to wait for another couple. 
This operation can be described using multiple threads representing the officers, brides and 
grooms. Implement a proper coordination mechanism between the officers, brides and grooms 
using semphores. The order of which bride gets married to which groom is unimportant. For 
your convenience, a skeleton structure for the threads are given below: (20 points)

// Globeal variables and their initial values

Semaphore mutex; Initial value = 1;
Semaphore BrideReady; Initial value =0;
Sempahore Groomready; Initial value=0;
Sempahore BrideLeave; Initial value=0;
Semaphore GroomLeave; Initial value=0;

Table 1: 

Officer() { Bride() {

while(TRUE) { //Indicate Bride ready

//wait unti bride and grrom are ready BrideReady->V();

BrideReady->P(); // Wait until marriage completed

GroomReady->P(); BrideLeave->P();

// Access marriage register to register 
marriage

}

mutex->P();

// access marriage register Groom() {

mutex->V(); // Indicate groom ready

// Complete marriage registration GroomReady->V();

BrideLeave->V(); // Wait until marriage completed

GroomLeave->V(); GroomLeave->P();

} // end while }

}



Dept. of CS/HKUST

COMP 252 (Fall 2000) makeup Mid-Term Examination 7

Student ID:____________________

6. Consider the following two programs: (20 points):

Note that Program P creates kernel threads and program Q creates pure user threads. Also, 
when a thread is created, it does not run immeditaely. It is first put into the corresponding 
ready queue.

Two processes are forked to execute the programs P and Q respectively (P is forked first). 
before any of the processes start their execution, the kernel ready queue looks like this:

Table 2: 

Program P: Program Q:

int x,a,b; int x,c,d;

main() { main() {

x=0; x=0;

// kernel threads // PURE user threads

create kernel thread A; create user thread C;

create kernel thread B; create user thread D;

wait until threads A and B terminate; wait until threads C and D terminate;

print a,b; print c,d;

} }

thread A() { thread C() {

x=x+3; // statement (1) x=x+4; // statement (5)

yield(); // kernel thread yield yield(); // user thread yield

a=x+3; // statement (2) c = x+4; // statement (6)

} }

thread B() { thread D() {

x=x+2; // statement (3) x= x+1; // statement (7)

b= x+2; // statement (4) d=x+1; // statement (8)

} }



Dept. of CS/HKUST

COMP 252 (Fall 2000) makeup Mid-Term Examination 8

Student ID:____________________

Both the kernel and the user thread library use FCFS scheduling policy.

Suppose during the program execution there are only two timer interrupts that force the kernel 
to do process/thread context switches. The two timer interrupts occur precisely between state-
ments (3) and (4) and between statements (7) and (8) respectively. Besides these, threre are no 
other external interrupts nor exceptions.

a) Show the actual execution of the tsatements (i.e. Statement (1), (2) , etc.) and the changes in 
the kernel ready queue.

b) What are the final values of the variables a, b c and d printed at the end of the programs ?

a=8
b=7
c=9
d=6

Table 3: 

Order Kernel ready queue Statement executed process/Thread in CPU

1 head->P->Q->NIL

2 head->Q->A->B->NIL P

3 head->A->B->NIL (5) Q

4 head->A->B->NIL (7) Q

5 head->B->Q->NIL (1) A

6 head->Q->A->NIL (3) B

7 head->A->B->NIL (8) Q

8 head->A->B->NIL (6) Q

9 head->B->NIL (2) A

10 NIL (4) B

Head

P Q


