;/ Cousp Yy HMrsic 1
‘ Department of Computer Science i

Kl

The Hong Kong University of Science and Technology

COMP 252 Principles of Systems Software OCT 1997
Leecture Section1—
Fall Semester 1997

Colytions + Midterm Examination

Date: October 13, 1997 Time: 11:00 - 11:50
Name: QO\\A'J_\,O“ Student ID: Email:

Instructions:

1. This cxamination paper consists of 5 pages and 5 questions.

2. Please write your name, student ID and Email on this page.

3. For each subsequent page, please write your student ID at the top of the page in the space
provided.

4. Please answer all the questions within the space provided on the examination paper. You
may use the back of the pages for your rough work.

5. Please read each question very carefully and answer the question clearly and to the point. ?

Make sure that your answers are neatly written, readable and legible.

6. Show all the steps you use in deriving your answer, wherever appropriate.

7. For each of the questions assume that the concepts are known to the graders. Concentrate on

answering to the point what is asked. Do not define or.describe the concepts.

Question Points . Score
1 20
2 10
3 15
4 25
5 30
TOTAL 100

COMP 252 Sec. 3 (Fall 1997) Midterm Examination 1

Dept. of CS/HKUST ’ 2 Student ID:

1. Answer the following true/false questions by circling either T or F. (20 points)

a)

b)
c)

d)
e)

i)

If no thread/process is waiting on a condition variable, then a signal operation
executed on the condition variable by a thread will have no effect.

The operating system executes in user mode.

When a timer interrupt occurs, the currently executing process/thread
on the CPU will be blocked and moved to waiting state.

A child process in UNIX shares its address space with its parent process.

A multithreaded process has only one program counter value associated
with its address space.

In UNIX an execve() system call results in the creation of a new address
space.

In a multithreaded process, a thread does not share its data section with
any of the other threads.

An operating system is interrupt driven.

Multiprogramming does not require the support of any memory
protection mechanism.

Buffering permits the overlap of the I/O of one job with the execution (
of another job. T @

2. Describe (in no more than five sentences) the steps involved in creating and initializing a

thread (e.g., in nachos, this is done in two parts: thread::thread() and thread::fork()). (10

*

points)

imikahiee TP ey 4, Poz»& d= Ha cerreck colle,
’D&‘ 4o POCV\.% o 5\0\:& an_'b\Jeu_c.

———

2 AUOC_JR_ o Theed Coubnl Block (Tc,ﬁl_ Wit -HM_TQS/
|
(

2 Alocake an exebion stuck space oo
Yo Hreead.,

2 Toblie tho S® Gade e 7o) b ik
BoYe stk gpees

Z?@ace e TCE on We reode, —homt i At

v

COMP 252 Sec. 3 (Fall 1997) Midterm Examination ' 2

cof

Dept. of CS/HKUST

. 3

Student ID:

3. The current state of the computer system is shown in the figure below. If a context switch
occurs at this point, what will be the state of the computer system after the completion of
the context switch? Assume that the next process to be allocated the CPU is the process at
the head of the ready queue, and that the context switch is caused by a timer interrupt.

ed

- p(,%?—

COMP 252 Sec. 3 (Fall 1997)

points)

a) Before Context Switch:

CPU
rc[_135
SP
pp[832
RI[8 |
R2

b) After Context Switch:

CpPU

pc[7523]

SP
DP|_ (090

RI[__—4%5]
R2| 3 &9

Midterm Examination

5
CurrentThread

(Running thread) Ready Queue Head

PCB1 PCB2 PCB3
PC[293 | pcli023] [™|pc[2032]
SP SP SP
DP[832 | DP[1090 DP[2925]
R1 R1 R1| 325
R2 R2 R2

1. Q updeed?
CurrentThread Read . pCB > ! 2
at q
(Running thread) eady Queue Hea g\ &O{J'C’
2

PCB1 PCB2 PCB3
c[135]| [pcllo23 pc[zezd))
SP[#35|[v [SPLeroz]\ e (sP[5ozi]l | 7, g
DP[E52) [cum |DP[Lo] " |DP2327) |~y
RI (P |RI L r
R ¢ |RERD ([R5

L L
- =

Dept. of CS/HKUST "’ 4 Student ID:

4. Three threads T1, T2 and T3 want to execute within a critical section. We want to impose a %
strict ordering of execution of these threads (25 points) E

a) First T1 should execute within the critical section (CS),

b) when T1 finishes its execution in the CS then T2 will be allowed to execute in the CS,
c) when T2 finishes in the CS, then T3 will be allowed to execute in the CS, and

d) when T3 finishes in the CS, then T1 is allowed to execute the CS next, and so on.

Thus the order of execution of the three threads within the critical section is T1, T2, T3, T1,
T2, T3, (hint: think about synchronization using semaphores).

a) How many semaphores will be required to achieve this ordering, and what should be
their initial values?

3 smp\«meb ere W@elfal
S4 with IMIJ'W\Ue rpbue 4

S2 — — Z
S% —I = g

b) Sketch the code for the three threads and show how you can use the semaphore P() and
V() operations to enforce the ordering..

T4 T2 T3
wli e (TRUED Y wlife (TRVE)A while (TROED
SA—=P() S2 PO $3 —)
S S c S
s2->V() S3 —>Vv() 1>V

3 J 3

%TL\M polubrn 1o weth 2T poruts
~ The A'UQW‘V“j 5‘76‘*%1’“ with 4 S@Mv})}‘r/eo / 8/187,83 ol yw%fx:.

i wWhate (Teue) s werth only 20 5 < MHMdce
ool S P({) mutwel exclunid, il qf,(ﬂ]‘i oerl T3
€5 o elvesdy provded 4y 4, 52,83
$2 5 V()
mutex > ()

!

COMP 252 Sec. 3 (Fall 1997) Midterm Examination ' 4

[/ Dept. of CS/HKUST . e 5 Student ID:

5. The operating system maintains a single global printer queue from which a printer control-
ler process picks up the next print job to be printed. Processes requiring use of the printer
will queue up their print job into the global printer queue. When there is no printing to be
done, the printer is idle. Implement a mechanism to coordinate access to the global shared
printer queue among the printer controller process and other processes. A rough skeleton of
the printer controller process and a user process is given below for your convenience. You
may use either semaphores or locks/condition variables. You may also consider the printer

ueue size to be unbounded. (30 points) .
1 P Soald e TUbex = i
List *printer_queuc;/ S(’M\Vw\f&’m(Cofvheller = O)
printer_controller () { user_process() {
. while (TRUE) {)
Conto Ve =0 —> //if no job in queue, then idle Do other work; AUFA PO
. &=
e r—> PO) —=
printer_queue->Remove(); _ printer_queue->Add(); é/’r\/\ =Y
uren—>>V() 5 — // if printer idle, wake it up

PN “es \\Q‘(_,7\/(9
Print the job on the printer Do other work Contee

}

V. (pdveck MusloeY SQAJ\OJ(?\/\MLQ wrh Cosfect (N al
STAwey - \© pove
. proper srukwed xcdusion 0N T Cﬂ\\\AW- o
CRN %w&mmm (bl 4 e pr 7
Woer (PO |0 oSS

|19 kn‘v\hs

COMP 252 Sec. 3 (Fall 1997) Midterm Examination ‘ 5

