COMP 271 --- Spring 1999
FINAL EXAMINATION - May 26, 1999

Name: Student ID:
Tutorial Section (please circle): 1A 1B 2A 2B

All questions should be answered within the space provided after each problem .

1-20%] Greedy

a-8% There exist n classes, each represented by an interval [d]i], f[i]) where §i] denotes the starting time of classi and f[i]
its finishing time (1< i <n). Write the pseudo-code for a greedy algorithm to assign as many non-overlapping classes as
possible in asingle lecture hall and explain briefly its complexity:

a] Sort classes by their finishing time f[i]
b] H={1}
i=1
FOR (j=2; j++; j<=n)
IF(s(j] >=f[i]) {
addjtoH
i=j
}

Complexity: nlogn

b-12% Convert you agorithm for the case that there exist n available lecture halls (equal to the number of classes) and we
want to use the smallest number of hallsin order to accommodate al classes. Use an array H[1..n] to store the hall used for
each class, that is, H[i]=h if classi is assigned to lecture hall h. Explain briefly how the algorithm works and state its
complexity.

a Sort classes by their finishing time
b] FOR (i=1; i++; i<=n) {// initialization
H[i]=0// classi is not assigned to any hall
LCJi]=0// finishing time of last class assigned to hall i

}
FOR (h=1; h++; i<=n) //for each hall
FOR (i=1; i+; i=n) // for each class
IF(H[iI]=0 AND d[i]>=LC[h]) {
H[i]=h
LC[h]=f[i]
}

Complexity: n?

2-30%] Dynamic Programming - Backtracking - Branch and Bound

Assume the following version of the 0-1 knapsack problem: there exist n objects and each object i has aweight w[i] and a
value v[i]. The goal is to take the objects with the maximum value in a knapsack that can carry weight C. Notice that it is not
the same version as the project since now there exists only one object of each type.

a-10% Write a dynamic programming algorithm that returns the optimal value that can be carried in the knapsack (without
the objects to be included). Use the notation of the lecture notes, that is, V(k,i) is the optima value in a knapsack with
weight k using only thei first objects and W(k,i) is the corresponding weight.

FOR (k=1 k++; k<=C)
FOR (i=1; i++; i<=n)
IF (k-wl[i]<0)
V(k,i)=V(k,i-1)
ELSE
V(k,i)=max{ V(k,i-1), V(k-w[i],i-1)+ V[i]}
RETURN V(C,n)

b-10% Write a backtracking algorithm that solves the above problem.

Knapsack-BT(n, C)
BT(1,C)

BT(i,C)
b=0
FOR (k=i; k++; k<=n)
IFw[i]l<=C
b=max{b,v[K]+BT(k+1, C-w[k])}
RETURN b

c-10% Write a branch and bound a gorithm for the same problem

Knapsack-BB(n,C)

Sort all objects according to v[i]/w[i] in decreasing order
target =0

BB(1,C)

BB(i,c)
b=0
FOR (k=i; k++; k<=n)
IFw[i]<= C AND (V[i]+(C-w[i])*v[i+1]/w[i+1])> target
b=max{b,v[k]+BT(k+1, C-w[k])}
IF b>target
target=b

RETURN b

3-22%] Depth First Search - Topological Sort
a-8% Write the pseudo-code for depth first search starting from a node u (use the terminology of the lecture notes where the
recursive procedureis called DFSVisit)

DFS(u)

for each vertex v
flag[v]=unvisited
pred[v]=null

DFSVisit(u)

DFSVisit(v)
flag[v]=visited
for each vertex w adjacent to v
if (flag[w]=unvisited)
pred[w]=v
DFSVisit(w)

b-2% Write the calls of the DFSVisit for the following graph starting from node 1 (notice that the algorithm is the same for
directed and undirected graphs).

DFSVisit(1), DFSVisit(2), DFSVisit(3), DFSVisit(4), DFSVisit(5), DFSVisit(8)

c-12% Write the pseudo-code for a modified DFS algorithm that produces a topological sort of the nodes in adirected
graph, that is, a printout of the nodes so that if node u is before v then it means that there is no path from v to u. For
instance, avalid order in the above graph is 7,6,1,2,3,4,5,8; on the other hand 1,2,3,7,6,4,5,8 isinvalid because 3 should be
after 7 and 6. (Notice: do not use the algorithm for topological sort in the lecture notes because it is based on breadth-first
search).

Topological sort()

list=0

for each vertex u
flag[u]=unvisited
pred[u]=null

for each vertex v with in-degree O
DFS(v)

reverselist

print list

DFS(v)
flag[v]=visited
for each vertex w adjacent to v // there is a directed edge from v to w
if (flag[w]=unvisited)
pred[w]=v
DFS(w)
list=list+v

4-13%] Minimum Spanning Treesand Metric Travelling Salesman Problem
Consider the following graph:

a-3% Write the order with which edges are added to the minimum spanning tree according to Kruskal's algorithm:
(1,2), (3,4), (1,3), (3,5)

b-3% Write the order with which edges are added to the spanning tree using Prim's algorithm, starting with node 1:
(1.2), (1.3), (34), (3,5

c-7% Use the minimum spanning tree to obtain a "good" tour for the metric travelling salesman problem. List the nodes
visited and the total cost, and explain briefly how good is this solution compared to the optimal one.

1,2,3,4,5,1 with cost 20. The optimal solution cannot have a cost less than 10.

5-15%] NP-Completeness
Prove that Independent Set is NP-Complete. Use reduction from 3SAT and illustrate it with the following formula:
(-xz yR2)A-xyGF 2)0(xEF y&F 2)0-xE yiE 2)

1 ISONP
You can verify whether a set of n nodes are independent in polynomial time, by checking if there is an edge between an
pairs of nodes (O(n?)).

2] 3SAT can be reduced to IS as follows:
» For each clause you create a triangular subgraph, where every node in the triangle corresponds to a literal.
» Then you add edges between the conflicting nodes, i.e., nodes that cannot be true at the same time.

e The graph has an independent set with m nodes (where m is the number of clauses in the formula, in this case 4) IF
AND ONLY IF the formulais satisfiable.

Assume that the graph has an IS with m nodes. All these nodes belong to different triangles (any two nodesin the
same triangle cannot be independent). If we make the literals corresponding to these nodes true, then we have a
satisfying truth assignment for the formula (since the nodes are independent, they are not in conflict, so they can all
be true at the same time).

Now assume the opposite, that is, the formulais satisfiable. Then we identify a true literal in each clause and pick
the node in the triangle of this clause labelled by thisliteral: This way we collect mindependent nodes.

