COMP201: Java Programming

Fall 2000 Mid Term Examination

1 November, 2000 (6:30pm to 8:00pm)

Name:

Student ID:

Lab Section: 11:00~11:50/12:00~12:50/13:00~13:50

Instructions:

1. This is a closed-book, closed-notes examination.

2. Check that you have all 15 pages (including this cover page).

3. Write your name, student number, and circle the lab section on this page.

4. Answer all questions in the space provided. Rough work should be done on the back pages.

	Question 1 (20 %)

	

	Question 2 (25 %)

	

	Question 3 (25 %)

	

	Question 4 (25 %)

	

	Question 5 (5 %)

	

Question 1 (20 marks)

Consider the following Java statements which attempt to retrieve the current color of a Pen object in a graphics application:

// driver code

int r=-1, g=-1, b=-1;

pen.getRGBColor(r,g,b);

System.out.println(“red = “ + r + ”, green = “ + g +

 “, blue = “ + b);

class Pen{

 int redValue, greenValue, blueValue;

 ...

 void getRGBColor(int red, int green, int blue){

 red = redValue;

 green = greenValue;

 blue = blueValue;

 }

}

i) What will be the output of System.out.println statement above??

Ans:

red = -1, green = -1, blue = -1

ii) Re-implement the above code so that after calling the method getRGBColor in the driver code, the contents of redValue, greenValue, and blueValue of a Pen object are retrieved and printed through the System.out.println statement. You may assume that the format of the output is the same as before.

Ans:

class RGBColor {

 public int red, green, blue;

}

class Pen {

 int redValue, greenValue, blueValue;

 void getRGBColor(RGBColor aColor) {

 aColor.red = redValue;

 aColor.green = greenValue;

 aColor.blue = blueValue;

 }

}

 // driver code

 RGBColor penColor = new RGBColor();

 pen.getRGBColor(penColor);

 System.out.println(“red = “ + penColor.red + ”,

 green = “ + penColor.green +

 “, blue = “ + penColor.blue);

Question 2 (25 marks)

An Employee class is an abstract class from which the following classes are derived: Boss, CommissionWorker, and HourlyWorker. The way a person’s earnings are calculated depends on the class of the employee. For example, a boss is paid a fixed weekly salary regardless of the number of hours worked. A commission worker is paid a flat base salary plus a percentage of sales (base salary + commission*quantity of sale). An hourly worker is paid by the hour and receives overtime pay (hourly wage rate * number of hours). Implement the following classes: Employee, Boss, CommissionWorker, and Hourly Worker. You should define all necessary fields in the appropriate classes. In addition, implement the method calculateEarnings such that it is able to perform different ways of calculating the earnings of a person depending on the class the person belongs to. You may assume the following as given and they are not modifiable.

· Constructor functions of Employee, Boss, CommissionWorker, and HourlyWorker. Namely,

 public Employee(String name)

 { employeeName = name;

 }

 public Boss(string name, double salary)

 { super(name);

 weeklySalary = salary;

 }

 public CommissionWorker(String name,double s,

 double c, int q)

 { super(name);

 salary = s;

 commission = c;

 quantity = q;

 }

 public HourlyWorker(String name, double w, double h)

 { super(name);

 wage = w;

 hours = h;

 }

· Print function for each class. Details of the functions are omitted here.

· A test driver program:

public class Test {

 public static void main (String args[])

 { Employee[] staff = new Employee[3];

 Boss john = new Boss(“John Smith”, 800.0);

 CommissionWorker sue

 = new CommissionWorker(“Sue Jones”, 400.0,

 3.0. 150);

 HourlyWorker karen

 = new HourlyWorker(“Karen Price”, 13.75, 40);

 staff[0] = john;

 staff[1] = sue;

 staff[2] = karen;

 for (int i=0; i<3; i++) {

 staff[i].calculateEarnings();

 staff[i].print();

 }

 }

}

Ans:

public abstract class Employee {

 private String employeeName;

 public abstract double calculateEarnings();

}

public class Boss extends Employee{

 private double weeklySalary;

 public double calculateEarnings()

 { return weeklySalary; }

}

public class CommissionWorker extends Employee {

 private double salary;

 private double commission;

 private int quantity;

 public double calculateEarnings()

 { return salary + commission*quantity; }

}

public class HourlyWorker extends Employee {

 private double wage; // wage per hour

 private double hours; // hours worked for week

 public double calculateEarnings()

 { return wage * hours; }

}

Question 3 (25 marks)

i) Give a key advantage of using catch (Exception e).

Ans:

The form catch (Exception e) catches any type of exception thrown in a try block. An advantage is that no thrown Exception can slip by.

ii) The following code segments are inappropriate use of exception handling. Write the appropriate implementation.

Stack s = new Stack();

try {

s.pop();

}

catch {EmptyStackException e) {

}

Ans:

Stack s = new Stack();

if (!s.empty())

 s.pop();

istream is;

Stack s;

for (i=0; i<100; i++){

 try

 { n = s.pop();

 }

 catch (EmptyStackException s)

 { // stack was empty

 }

 try {

 out.writeInt(n);

 }

 catch (IOException e)

 { // problem writing to a file

 }

 }

Solution:

try {

 for (i=0; i<100; i++) {

 n = s.pop();

 out.writeInt(n);

 }

}

catch (IOException e) { ... }

catch (EmptyStackException s) { ... }

iii) The following pseudocode reads an entire file into memory.

readFile {

 open the file;

 determine the size of the file;

 allocate that much memory;

 read the file into memory;

 close the file;

}

To handle the following potential errors:

· the file can’t be opened

· the length of the file can’t be determined

· there is insufficient memory

· the file reading operation fails

· the file can’t be closed

a conventional function that incorporates the above error handling would be:

errorCodeType readFile {

 initialize errorCode = 0;

 open the file;

 if (theFileIsOpen) {

 determine the length of the file;

 if (gotTheFileLength) {

 allocate that much memory;

 if (gotEnoughMemory) {

 read the file into memory;

 if (readFailed) {

 errorCode = -1;

 }

 } else {

 errorCode = -2;

 }

 } else {

 errorCode = -3;

 }

 close the file;

 if (theFileDidntClose && errorCode == 0) {

 errorCode = -4;

 } else {

 errorCode = errorCode and -4;

 }

 } else {

 errorCode = -5;

 }

 return errorCode;

}

Use the exception handling mechanism in Java to rewrite this pseudocode function. You may assume the following exception types as given: fileOpenFailed, sizeDeterminationFailed, memoryAllocationFailed, readFailed, fileCloseFailed.
Ans:

readFile {

 try {

 open the file;

 determine its size;

 allocate that much memory;

 read the file into memory;

 close the file;

 } catch (fileOpenFailed) {

 doSomething;

 } catch (sizeDeterminationFailed) {

 doSomething;

 } catch (memoryAllocationFailed) {

 doSomething;

 } catch (readFailed) {

 doSomething;

 } catch (fileCloseFailed) {

 doSomething;

 }

}

Question 4 (25 marks)

i) Give an example for a semantic event and a low-level event.

Just copy any example from the lecture notes.

ii) Explain the motivations for separating GUI from application code.

* an action can be called in more than 1 way

* uniform handling of an action no matter how the command is invoked

iii) The following java program implements a panel with a single button. When a user clicks on the button, the background color toggles between yellow and blue. The default color is yellow and the button is labelled as “toggle color”. The implementation below has left out statements implementing the following steps:

· set the default background color to yellow

· add the panel to the frame

· add the button to the panel

· register the listener with the event source

· implement the ActionListener interface in the listener

· toggle the color between yellow and blue whenever the button is clicked

Fill in the missing statements in the appropriate location.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class ButtonPanel extends JPanel implements

ActionListener

{ public ButtonPanel()

 {

 toggleButton = new JButton("toggle color");

 add(toggleButton);

 toggleButton.addActionListener(this);

 }

 public void actionPerformed(ActionEvent evt)

 {

 Color color = getBackground();

 // toggle the color between yellow and blue

 if (color == Color.blue)

 setBackground(Color.yellow);

 else

 setBackground(Color.blue);

 repaint();

 }

 private JButton toggleButton;

}

class ButtonFrame extends JFrame

{ public ButtonFrame()

 { setTitle("ButtonTest");

 setSize(300, 200);

 addWindowListener(new WindowAdapter()

 { public void windowClosing(WindowEvent e)

 { System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 contentPane.add(new ButtonPanel());

 }

}

public class ButtonTest

{ public static void main(String[] args)

 { JFrame frame = new ButtonFrame();

 // set background color to yellow

 frame.setBackground(Color.yellow);

 frame.show();

 }

}

Question 5 (5 marks)

i) Write Java statements to open a text file “employee.data” and read one line of input into the string line.

Ans:

BufferedReader in

= new BufferedReader(new FileReader(“employee.dat”));

String line = in.readLine();

ii) Write Java statements to write a string called line with contents “hello world” into a text file “employee.txt”. You need to initialize the contents of line in your answer.

Ans:

PrintWriter out

= new PrintWriter(new FileOutputStream(“employee.txt”));

String line = “hello world”;

out.println(line);

API Guide

java.io.FileOutputStream

FileOutputStream(String name)

//creates a new file output stream specified by the name //string.

java.io.DataInput

String readLine()

//reads in aline that has been termiated by a \n, \r,

//\r\n, or EOF. Returns a string containing all bytes in

//the line converted to Unicode characters.

java.io.PrintWriter

PrintWriter(OutputStream out)

//creates a new PrintWriter, without automatic line

//flushing, from an existing OutputStream by

//automatically creating the necessary intermediate

//OutputStreamWriter.

void println(String s)

//prints a string followed by a line terminator.

java.io.FileReader

FileReader(string fileName)

//Creates a new FileReader, given the name of the file to

//read from.

java.io.BufferedReader

BufferedReader(Reader in)

//Create a buffering character-input stream that uses a

//default-sized input buffer.

java.awt.Container

void add(Component c)

//Adds a component to this container

java.awt.Component

void setBackground(Color c)

//Sets the background color of this component.

Color getBackground()

//Gets the background color of this component.

java.awt.Color

fields:

static Color blue

//The color blue.

static Color yellow

//The color yellow

java.awt.Button

void addActionListener(ActionListener l)

//Adds the specified action listener to receive action

//events from this button.

PAGE
1

