Problem

Given a database with the relations below, express the following queries using SQL, relational algebra, relational calculus and QBE.

Film (<u>Title</u>, Director, Year, Company) Actor (<u>SSN</u>, Name, Birth_Date) Plays (<u>SSN</u>, Title, Earnings)

Q1: Retrieve the names of actors who earned more than 1000 for a single movie in 1997.

Q2: Retrieve the names of actors who played in all movies directed by John Woo.

Query	SQL	algebra	(tuple) calculus	QBE			
Q1	Select A.name From Actor A, Plays P, Film F Where A.SSN=P.SSN and P.Title=F.Title and F.year=1997 and P.Earnings>1000	$\pi_{sname}(\sigma_{Film.Year=1997 \text{ and}} \\ \text{Plays.Earning} > 1000 \text{ (Actors} \\ \text{JOIN}_{SSN} \text{Plays JOIN}_{Title} \\ \text{Film))}$	$\{X \mid \exists A \in Actors \exists P \\ \in Plays \exists F \in Films \\ (X.name = A.name \land \\ A.SSN=P.SSN \land \\ P.Title=F.Title \land F.Year = \\ 1997 \land P.Earnings>1000\}$	Actors	SSN _S SSN _S	Name P. Title _T	BDate Earnings >1000
				Films	Title _T	Director	Year 1997
Q2	Select A.name From Actor A Where not exists ((Select F.Title From Films F Where F.Director=Woo Except Select P.Title From Plays P		$\{X / \exists A \in Actors \land \forall F \in Films (F.Director = Woo ⇒ ∃ P ∈ Plays (F.Title=P.Title ∧ P.SSN=A.SSN ∧ X.name=A.name))}$	Actors	SSN _S SSN _S	Name Title _T	BDate Earnings
				Films BadIds I.	Title _T SSN _S	Director Woo	Year
	Where P.SSN=A.SSN))			Actors BadIds ~	SSN _S2 SSN _S2	Name P.	BDate

For the following queries write only the SQL statements:

Q3: Which is the movie that spent the largest amount on actors (not on a single actor)

Q4: Display the actor names who earned in a film more money than the maximum amount that "Travolta" earned in a single movie.

	\mathcal{E}
Select Temp.Title	Select A.name
From (Select Title, SUM(Earnings) AS S	From Actor A, Plays P
From Plays	Where A.SSN=P.SSN and
Group By Title) as Temp	P.Earnings>(Select P2.Earnings
Where Temp.S = (Select $MAX(S)$)	From Plays P2, Actors A2
From Temp)	Where P2.SSN=A2.SSN
	and A2.name="Travolta")

Problem

In the example database of the previous problem assume the following sizes of each attribute:

Film (<u>Title</u>: 40 bytes, Director: 20 bytes, Year: 4 bytes, Company: 20 bytes)

Actor (<u>SSN</u>: 4 bytes, Name: 20 bytes, Date_of_Birth: 4 bytes)

There exist 30,000 films in the database and 100,000 actors. Each block/page is 512 bytes and each pointer is 6 bytes. The blocking factor of a file (*bfr*) is the number of records that fit in a page.

- 1] What is the blocking factor for Film relation bfr_F and bfr_A for Actor relation? $bfr_F = 512/84 = 6$, $bfr_A = 512/28 = 18$
- 2] Assuming that the Film relation is sorted on the Title and there is no index what is the cost (in terms of block reads) for:
 - a] finding the film with title "Titanic": the file is stored in 30,000/6=5,000 pages. Cost of binary search: log₂5000=13
 - b] finding all the films directed by "Tarantino": we need sequential scan since sorting is not based on director (5000 pages)
- 3] Assume that the Actor relation is sorted on the name and you want to create an index on SSN (each index entry has the form <SSN, pointer>).
 - a] What is the blocking factor for the index (single-level): $\frac{bfr_{Aindex}}{512/(4+6)} = 51$
 - b] How many index entries you need (explain): 100,000 we need dense index because sorting is according to name (not SSN).
 - c] How many number of blocks are required for these entries: 100,000/51=1961
 - d] What is the cost of retrieval based on a single SSN using this organization. $log_21961+1=12$
 - e] If you convert the above index in multiple-level index, how many levels you need (assuming full blocks)?

At the next level we index 1961 pages – i.e., index contains 1961/51=39 pages. We need an additional top level with 1 page